Acknowledgement
This study was partly supported by the National Research Foundation of Korea grant funded by the Korean government (NRF-2022 R1I1A3065599), and by the Korea CCUS Association (K-CCUS) grant funded by the Korean Government (KCCUS20220001, Human Resources Program for Reduction of greenhouse gases).
References
- da Silva, R. F., Hansen, J. E., Rijnsdorp, D. P., Lowe, R. J., & Buckley, M. L. (2022). The influence of submerged coastal structures on nearshore flows and wave runup. Coastal Engineering, 177 (August), 104194. https://doi.org/10.1016/j.coastaleng.2022.104194
- Dean, R. G., Chen, R., & Browder, A. E. (1997). Full scale monitoring study of a submerged breakwater, Palm Beach, Florida, USA. Coastal Engineering, 29(3-4), 291-315. https://doi.org/10.1016/S0378-3839(96)00028-2
- Deltares. (2017). Input trduction tool - User manual.
- Groenewoud, M. D., van de Graaff, J., Claessen, E. W. M., & van der Biezen, S. C. (1996). Effect of submerged breakwater on profile development. In Coastal Engineering 1996, 2428-2441. https://doi.org/10.1061/9780784402429.188
- Haller, M. C., Dalrymple, R. A., & Svendsen, I. A. (2002). Experimental study of nearshore dynamics on a barred beach with rip channels. Journal of Geophysical Research, 107(C6), 14-1-14-21. https://doi.org/10.1029/2001jc000955
- Jang, S., Cho, S., Park, W., & Jeong, H. (2014). A study on a characteristics of sediment transport around Myeongseondo at Jinha Beach. Journal of Korean Society of Coastal Disaster Prevention, 1(3), 118-125.
- Johnson, H. K., Karambas, T. V., Avgeris, I., Zanuttigh, B., Gonzalez-Marco, D., & Caceres, I. (2005). Modelling of waves and currents around submerged breakwaters. Coastal Engineering, 52(10-11), 949-969. https://doi.org/10.1016/j.coastaleng.2005.09.011
- Kang, M. H., Kim, J. S., Park, J. K., & Lee, J. S. (2015). Characteristics of wave-induced currents using the SWASH model in Haeundae Beach. Journal of Korean Society of Coastal and Ocean Engineers, 27(6), 382-390. https://doi.org/10.9765/kscoe.2015.27.6.382
- Korea Meteorological Administration (KMA). (2020). Open MET Data Portal. Retrieved from https://data.kma.go.kr/cmmn/main.do.
- Lee, J.-S., Park, M.-W., Kang, M.-H., & Kang, T.-S. (2015). Analysis of hydraulic characteristic in surf zone using the SWASH model during Typhoon NAKRI(1412) in Haeundae Beach. Journal of the Korean Society of Marine Environment and Safety, 21(5), 591-598. https://doi.org/10.7837/kosomes.2015.21.5.591
- Liang, B., Wu, G., Liu, F., Fan, H., & Li, H. (2015). Numerical study of wave transmission over double submerged breakwaters using non-hydrostatic wave model. Oceanologia, 57(4), 308-317. https://doi.org/10.1016/j.oceano.2015.07.002
- Lim, C., Kim, T. K., Lee, S., Yeon, Y. J., & Lee, J. L. (2021). Assessment of potential beach erosion risk and impact of coastal zone development: a case study on Bongpo-Cheonjin Beach. Natural Hazards and Earth System Sciences, 21(12), 3827-3842. https://doi.org/10.5194/nhess-21-3827-2021
- Lorenzoni, C., Postacchini, M., Mancinelli, A., & Brocchini, M. (2012). The morphological response of beaches protected by different breakwater configurations. Coastal Engineering Proceedings, 1(33), 52. https://doi.org/10.9753/icce.v33.sediment.52
- Magdalena, I., Atras, M. F., Sembiring, L., Nugroho, M. A., Labay, R. S. B., & Roque, M. P. (2020). Wave transmission by rectangular submerged breakwaters. Computation, 8(2), 56. https://doi.org/10.3390/computation8020056
- Marin, T. I., & Savov, B. (2017). Verification of the functional efficiency of submerged breakwaters by field measurements. Coastal Engineering Proceedings, 35, 18. https://doi.org/10.9753/icce.v35.structures.18
- Nobuoka, H., Irie, I., Kato, H., & Mimura, N. (1996). Regulation of Nearshore Circulation by Submerged Breakwater for Shore Protection. In Coastal Engineering 1996, 2391-2403. https://doi.org/10.1061/9780784402429.185
- Quataert, E., Storlazzi, C., van Dongeren, A., & McCall, R. (2020). The importance of explicitly modelling sea-swell waves for runup on reef-lined coasts. Coastal Engineering, 160, 103704. https://doi.org/10.1016/j.coastaleng.2020.103704
- Ranasinghe, R., Larson, M., & Savioli, J. (2010). Shoreline response to a single shore-parallel submerged breakwater. Coastal Engineering, 57(11-12), 1006-1017. https://doi.org/10.1016/j.coastaleng.2010.06.002
- Ranasinghe, R., & Turner, I. L. (2006). Shoreline response to submerged structures: A review. Coastal Engineering, 53(1), 65-79. https://doi.org/10.1016/j.coastaleng.2005.08.003
- Ranasinghe, R., Turner, I. L., & Symonds, G. (2006). Shoreline response to multi-functional artificial surfing reefs: A numerical and physical modelling study. Coastal Engineering, 53(7), 589-611. https://doi.org/10.1016/j.coastaleng.2005.12.004
- Rathnayaka, D., & Tajima, Y. (2020). Applicability of multilayer wave model for prediction of waves and undertow velocity profiles over a submerged breakwater. Proceedings of the 10th International Conference on Asian and Pacific Coasts(APAC 2019), 76, 781-788. https://doi.org/10.1007/978-981-15-0291-0_107
- Smit, P., Zijlema, M., & Stelling, G. (2013). Depth-induced wave breaking in a non-hydrostatic, near-shore wave model. Coastal Engineering, 76, 1-16. https://doi.org/10.1016/j.coastaleng.2013.01.008
- Stelling, G. S., & Duinmeijer, S. P. A. (2003). A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. International Journal for Numerical Methods in Fluids, 43(12), 1329-1354. https://doi.org/10.1002/fld.537
- Stelling, G., & Zijlema, M. (2003). An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. International Journal for Numerical Methods in Fluids, 43(1), 1-23. https://doi.org/10.1002/fld.595
- Suzuki, T., Verwaest, T., & Hassan, W., Veale, W., Reyns, J.,Trouw, K., Troch, P., & Zijlema, M. (2011). The applicability of SWASH model for wave transformation and wave overtopping: A case study for the Flemish coast. Proceedings of the 5th International Conference on Advanced COmputational Methods in Engineering (ACOMEN 2011). https://doi.org/10.13140/2.1.4232.7045
- The SWASH team. (2020). SWASH user manual. Simulating WAves till SHore, 1-152. https://swash.sourceforge.io/online_doc/swashuse/swashuse.html
- Villani, M., Bosboom, J., Zijlema, M., & Stive, M. J. . (2012). Circulation patterns and shoreline response induced by submerged breakwaters. Coastal Engineering Proceedings, 1(33), 25. https://doi.org/10.9753/icce.v33.structures.25
- Walmsley, T. V., Hanson, H., & Kraus, N. C. (2002). Wave transmission at detached breakwaters for shoreline response modeling [Technical note, CHETN-II-45]. https://erdc-library.erdc.dren.mil/jspui/handle/11681/1913
- Zijlema, M., & Stelling, G. S. (2008). Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coastal Engineering, 55(10), 780-790. https://doi.org/10.1016/j.coastaleng.2008.02.020
- Zijlema, M., & Stelling, G. S. (2005). Further experiences with computing non-hydrostatic free-surface flows involving water waves. International Journal for Numerical Methods in Fluids, 48(2), 169-197. https://doi.org/10.1002/fld.821
- Zijlema, M., Stelling, G., & Smit, P. (2011). SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engineering, 58(10), 992-1012. https://doi.org/10.1016/j.coastaleng.2011.05.015