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APPROXIMATION BY MODIFIED POST-WIDDER OPERATORS

Sheetal Deshwal a, Rupesh K. Srivastav b and Gopi Prasad c, ∗

Abstract. The current article manages with new generalization of Post-Widder
operators preserving constant function and other test functions in Bohmann-Korovkin
sense and studies the approximation properties via different estimation tools like
modulus of continuity and approximation in weighted spaces. The viability of the
recently modified operators as per classical Post-Widder operators is introduced in
specific faculties also. Numerical examples are additionally introduced to verify our
theortical results. In second last section we introduce Grüss-Voronovskaya results
and in last section, we show the better approximation our new modified operators
via graphical exmaples using Mathematica.

1. Introduction

The previous 70 years have seen progressively quick advancements in area of

approximation theory. In the direction to response the question of how to reveal the

best convergence to the given function, a lot of research has been printed. These

examinations offer a number of ways to deal with the development of estimating

functions. Meanwhile, P. P. Korovkin and autonomously by H. Bohman in the fifties

presented one of the major noteworthy theorem in approximation theory, called by

Bohman-Korovkin’s approximation theorem, which give yardstick to look over that

a given sequence (Lk)k ≥ 1 of positive linear operators converge to the function as to

the uniform norm of the space C[a, b], which implies, whether it speaks to or not an

estimation method. This result gives understanding into the investigations on linear

positive operators furthermore, a few new developments of approximating operators

have been found in literature. In addition, Post-Widder operators presented by

May [16] are one of the most broadly utilized gatherings in estimation process and

have been widely utilized for finding a better estimate to the selected function. The
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fundamental Post -Widder operators are presented as

(Pjh)(x) =
1

j!

(
j

x

)j+1 ∫ ∞

0
tje−jt/xh(t)dt,(1.1)

At that point, an enormous measure of literature have showed up in tending to refine

Post-Widder operators, which indicated that recently characterized operators have

comparative same approximation features to old style operators (see for instance,

[[8],[13],[17], [18], [19], [20]]). Very recently, Sofyalioğlu and Kanat [21] modified

Post-Widder operators in following form

P ∗
j,a(h;x) =

(2a)j

(j − 1)!(1− e
−2ax

j )j

∫ ∞

0
tj−1e

−2at

1−e−2ax/j h(t)dt,(1.2)

where a > 0 and j ∈ N and examined the rate of convergence by utilizing various

kinds of the modulus of continuity and manages with a quantitative Voronovskaya-

type theorem. At the last, authors compared their new developed operators with

Post-Widder operators constructed by Gupta and Tachev [14].

The fundamental point of present article is to offer a reasonable theoretical frame-

work based on modification of Post-Widder operators that preserve the constant

functions and we deal an adequate condition under which the modified operators

perform superior to the classical ones. The present article is neatly categorized in

following way:

• Section 2 presents the modified Post-Widder operator and determine the

values of test function and central moments for the same.

• In Section 3, some estimated results are calculated via different tools of

approximation process and compare the results with classical Post-Wider

operators define by ( 1.1) theoretically as well as graphically.

• In Section 4, we examine the estimation error of the operators defined in

Section 1 in weighted space via different weighted approximation tools and

study the Grüss-Voronovskaya theorem.

• last section, we show some graphical examples of our constructed operators

to verify the better approximation to function using mathematica.

2. A New Modification of Post-Widder Operators

In this segment we present a modification of Post-Widder operators and give some

essential results which will be utilized in the remaining portion of this paper. All
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through this and the following sections, we mean by ej as the polynomial function

characterized by ej(t) = tj and ϑx,j(t) = (t− x)j for x ∈ R+ and j ∈ N.
The recently referenced modification of our enthusiasm for this assessment is

described by

(2.1) Pj(h;x) =
(jx)j+2

Γj + 2

∫ ∞

0
exp−jx/v v−j−3h(v)dv.

Or, we can redefine the above operators in kernel form as follows

Pj(h;x) =

∫ ∞

0
Gj(x, v)h(v)dv,

where

Gj(x, v) =
(jx)j+2

Γj + 2
exp−jx/v v−j−3,

for bounded h ∈ R+, j ∈ N and x ∈ R+. Obviously these new modified operators

are linear and positive along these lines we will figure that this conditions satisfy

starting now and into the foreseeable future.

Lemma 1. The operator Pj(.;x) satisfies underneath equalities:

(i) Pj(1;x) = 1,

(ii) Pj(t;x) =
jx

j + 1
,

(iii) Pj(t
2;x) =

jx2

(j + 1)
,

(iv) Pj(t
3;x) =

j3x3

j(j − 1)(j + 1)
,

(v) Pj(t
4;x) =

j4x4

j(j − 1)(j − 2)(j + 1)
,

(vi) Pj(t
5;x) =

j5x5

j(j − 1)(j − 2)(j − 3)(j + 1)
,

(vii) Pj(t
6;x) =

j6x6

j(j − 1)(j − 2)(j − 3)(j − 4)(j + 1)
.

Proof. Using definition of operators Pj(.;x) and simple calculations, the proof of

identities (i)-(vii) is immediate. Hence we skip the details. �

It is obvious from the above lemma that operators Pj(.;x) conserve following in

limit case as

Pj(e1;x) → x

Pj(e2;x) → x2
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Pj(e3;x) → x3

Pj(e4;x) → x4

Pj(e5;x) → x5

Pj(e6;x) → x6

Above results directly indicate that sequence of operators {Pj}j≥1 do not fulfill

Korovkin test function criteria except constant. Although as indicated by Bohman-

Korovkin Theorem {Pj}j≥1, is an estimation procedure on any compact subset

D ⊂ R+ since the test functions conserve Korovkin polynomial functions in limiting

case.

In general, for x ∈ R+ and j ∈ N, following equality holds for Pj as

Pj(ek;x) =
jkΓ(j − k + 2)

Γ(j + 2)
ek(x), k = 0, 1, 2, · · ·

As an outcome of Lemma 1, we obtain:

Lemma 2. The operator Pj verifies the following central moments values:

(i) Pj(φx,1;x) =
−x

j + 1
,

(ii) Pj(φx,2;x) =
(x2

(j + 1)
,

(iii) Pj(φx,4;x) =
(3j + 2)x4

(j − 1)(j − 2)(j + 1)
,

(iv) Pj(φx,6;x) =
(15j2 + 190j + 24)x6

(j − 1)(j − 2)(j − 3)(j − 4)(j + 1)
.

Lemma 3. For every x ∈ [0,∞), we have

(i) limj→∞ j Pj((t− x);x) = x;

(ii) limj→∞ j Pj((t− x)2;x) = x2;

(iii) limj→∞ j2 Pj((t− x)4;x) = 3x4;

(iv) limj→∞ j3 Pj((t− x)6;x) = 15x6.

Proof. The confirmation of Lemma 3 follows effectively from Lemma 2, so the sub-

tleties are precluded. �
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3. Main Results

Next, we define CB[0,∞) as the normed linear space of all the function hav-

ing property of boundedness and uniformly continuity on [0,∞) favored the norm

defined as

||h|| = sup
x∈[0,∞)

|h(x)|.

In the going with theorem we show that the operators Pj is an estimation process

for functions in CB(R+).

Theorem 1. Let D be a compact subset of [0,∞). Then, for h ∈ CB(R+),

lim
j→∞

Pj(h;x) → h(x),

uniformly on D.

Proof. Considering Lemma 1, we have

Pj(ek;x) → ek, as j → ∞, uniformly on D, for k = 0, 1, 2.

Accordingly, the vital outcome goes to by seeking the Bohman-Korovkin criterion.

�

In our next result, we examine the rate of convergence of the operators Pj(.;x)

and then compare outcome with the result of classical Post-Widder operators given

in (1.1).

Theorem 2. Let ωy0+1(h, δ) be the modulus of continuity on the finite interval

[0, y0+1] ⊂ [0,∞) for y0 > 0 and h ∈ CB[0,∞). Then the following inequality holds

|Pj(h;x)− h| ≤ 3Mh
1

j + 1
y20(1 + y0)

2 + 2ωy0+1

(
h,

√
1

j + 1
y0

)
,

where Mh is a constant just depending on h.

Proof. By considering 0 ≤ x ≤ y0, t > y0 + 1 and h ∈ CB[0,∞), we can write for

t− x > 1

|h(t)− h(x)| ≤ Mh(2 + t2 + x2)

≤ Mh(t− x)2(2x2 + 2x+ 3)

≤ 3Mh(t− x)2(1 + y0).
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Again, for h ∈ CB[0,∞), 0 ≤ x ≤ y0 and t < y0 + 1 we have following inequalities

|h(t)− h(x)| ≤ ωy0+1(h, |t− x|)

≤ ωy0+1(h, δ)

(
1 +

1

δ
(|t− x|)

)
,

now combining above inequalities, for 0 ≤ x ≤ y0, 0 ≤ t < ∞ we conclude that

|h(t)− h(x)| ≤ 3Mh(t− x)2(1 + y0) + ωy0+1(h, δ)

(
1 +

1

δ
(|t− x|)

)
.

Now operating Pj and Cauchy-Schwarz inequality to above expression, we obtain

|Pj(h;x)− h(x)| ≤ 3MhPj((t− x)2;x)(1 + y0)
2

+ωy0+1(h, δ)

(
1 +

1

δ

√
(Pj((t− x)2);x)

)
≤ 3Mh

1

j + 1
y20(1 + y0)

2 + ωy0+1

(
h,

√
1

(j + 1)
y20

)

Letting δ =

√
1

(j + 1)
y20 we finish the proof. �

Remark 1. Let (Pjf)(x) be the classical Post-Widder operators given in (1.1). It

can be easily verified that

|(Pjh)(x)− h(x)| ≤ 3Mh
1

j
y20(1 + y0)

2 + ωy0+1

(
h,

√
1

j
y20

)
where modulus of continuity is given by ωy0+1(h, δ) on finite interval [0, y0+1], y0 > 0

and Mh is a constant depends only on h and h ∈ CB[0,∞).

Our assertion is that error approximation of modified Post-Widder operators gives

us better error estimation in comparison with their classical Post-Widder operators

for h ∈ CB[0,∞) and y0 > 0 given in (3.1). Therefore as to demonstrate this case

we just need to show
y20

j(j + 1)
≥ 0 for y0 ≥ 0. In reality

y20
j

− y20
j + 1

=
y20

j(j + 1)
≥ 0 for y0 ≥ 0 j ≥ 0.

This outcome ensures that the error term

√
1

(j + 1)
y20 for our modified operator is

smaller than

√
1

j
y20 in (3.1), which guarantees the proof of our claim. In addition,

we will introduce some numerical examples to address our case by numerically.
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Table 1. Error table for the operators Pj(.;x) and (Pj .)(x)

j 1 5 10 15 50 100
error Pj(.;x) 0.707107x 0.408248x 0.301511x 0.25x 0.140028x 0.995037x
error (Pj .)(x) x 0.447214x 0.316228x 0.258199x 0.141421 0.1

Figure 1 Figure 2

Figure 1 shows convergence of operators Pj(.;x) and (Pj .)(x) to the function

h(x) = x2 + 3x+ 6 for j = 5 and x ∈ [0, 10].

Figure 2 shows convergence of operatorsPj(.;x) and (Pj .)(x)to the function h(x) =

x2 + 3x+ 6 for j = 10 and x ∈ [0, 10].

Blue, green and red curves represent the function h(x), the Post-Widder operators

(Pjh)(x) and modified Post-Widder operators Pj(h;x) respectively.

Figure 3 Figure 4

Figure 3 shows convergence of operators Pj(.;x) and (Pj .)(x) to the function

h(x) = x2 + 3x+ 6 for j = 5 and x ∈ [0, 10].

Figure 4 shows convergence of operatorsPj(.;x) and (Pj .)(x)to the function h(x) =

x2 + 3x+ 6 for j = 10 and x ∈ [0, 10].
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Blue, green and red curves represent the function h(x), the Post-Widder operators

(Pjh)(x) and modified Post-Widder operators curves Pj(h;x) respectively.

In light of above table and graphs, we conclude that the approximation given by

recently consider modified Post-Widder operators Pj(.;x) is much better than the

classical Post-Widder operators (Pj .)(x).

4. Weighted Approximation Properties

Around there, we give Korovkin type results for weighted estimation of modified

Post Widder operators, (Pj)j≥1. As per this reason, we define some weighted spaces

on [0,∞) as follows

• Bσ(R+) denotes space of all bounded functions in weighted space i.e it con-

tains all the functions h such that |h(x)| ≤ Mhσ(x).

• Cσ(R+) is space of all continuous and bounded functions in weighted space,

it means Cσ(R+) contains all the functions of type h : h ∈ Bσ(R+) ∩
C[0,∞)).

• Lastly Ck
σ(R+) denotes the class of function of type f ∈ Cσ(R+) and

limx→∞
f(x)
σ(x) = k (some constant)) in weighted space.

Here, the weight function is denoted by σ(x) = 1+x2 and the constant Mh depends

only on the function.

The proof of existence as normed linear space of Cσ(R+)is shown in [4] favored

the norm ||h||σ := sup
x≥0

|h(x)|
σ(x)

.

It is remarkable that if for continuous function h on an infinite interval, the

classical modulus of continuity ω(h; δ) 9 o.. In this manner, so as to examine the

estimation of functions in thee of space of weight function i.e Ck
σ(R+), Ispir and

Atakut [4] presented the accompanying modulus of continuity for weighted space

Ω(h; δ) = sup
x∈[0,∞),|g|≤δ

|h(x+ g)− h(x)|
(1 + g2)(1 + x2)

,(4.1)

and indicated that

lim
δ→0

Ω(h; δ) = 0, ω(h;λδ) ≤ 2(1 + λ)(1 + δ2)Ω(h; δ), λ > 0

and
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|h(u)− h(x)

≤ 2

(
1 +

|u− x|
δ

)
(1 + δ2)(1 + x2)(1 + (u− x)2)Ω(f ; δ), u, x ∈ [0,∞).(4.2)

In the following theorem we show that the operator Pj is an estimation method

for functions belonging to the weighted space Ck
σ(R+):

Theorem 3. The following equality is satisfied by the the sequence of linear positive

operators Pj , for each h ∈ Ck
σ(R+),

lim
j→∞

||Pj(h;x)− h(x)||σ = 0.

Proof. By Lemma 1, clearly limj→∞ ||Pj(1;x)− 1||σ = 0.

Now,

sup
x≥0

|Pj(t;x)− x|
1 + x2

≤
∣∣∣∣ −1

j + 1

∣∣∣∣ sup
x≥0

x

1 + x2

≤
∣∣∣∣ −1

j + 1

∣∣∣∣,
which affirms that limα→∞ ||Pj(t;x)− x||σ = 0. Again,

sup
x≥0

|Pj(u
2;x)− x2|
1 + x2

≤
∣∣∣∣ −1

(j + 1)

∣∣∣∣ sup
x≥0

x

1 + x2

≤
∣∣∣∣ −1

(j + 1)

∣∣∣∣,
which implies that limα→∞ ||Pj(t

2;x)−x2||σ = 0. Hence the weighted Korovkin-type

theorem presented in [9] gives the confirmation of appropriate result. �

In the accompanying theorem, the rate of convergence is gotten by methods for

the weighted modulus of continuity.

Theorem 4. Let h ∈ Ck
σ(R+). Then for sufficiently large j and a constant K (

liberated from h and j ) the following inequality is verified

sup
x∈[0,∞)

|Pj(h;x)− h(x)|
(1 + x2)5/2

≤ KΩ

(
h;

1√
j

)
.
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Proof. Bearing in the mind the weighted modulus of continuity, Lemma 3 and

Cauchy-Schwarz inequality, one without a very remarkable stretch sees that

|Pj(h;x)− h(x)| ≤ Pj(|h(u)− h(x)|;x)

≤ 2(1 + δ2)(1 + x2)Ω(h; δ)Pj

((
1 +

|ϑx,1(u)|
δ

)
(1 + ϑx,2(u));x

)
≤ 2(1 + δ2)(1 + x2)Ω(h; δ)

(
Pj(e0(x);x) +Pj(ϑx,2(u);x)

+
1

δ
(Pj(ϑx,2(u);x))

1/2

+
1

δ
(Pj(ϑx,2(u);x))

1/2 × (Pj(ϑx,4(u);x))
1/2

)
Now, picking δ = 1√

j
, we appear to end immediately. �

In the accompanying outcome, using the weighted modulus of continuity we

demonstrate a quantitative Voronovskaja type theorem.

Theorem 5. Let h ∈ Ck
σ(R+) such that h′,h′′ ∈ Ck

σ(R+).

Then, for any x ∈ [0,∞), we have following equality

j

j + 1

∣∣∣∣(j + 1)Pj(h;x)− (j + 1)h(x) + h′(x)x− h
′′
(x)x2

∣∣∣∣ = 8(1 + x2)Ω(h
′′
; δ)O(1).

Proof. For each h, h
′′ ∈ Ck

σ [0,∞) and u < ς < x, by Taylor’s expansion, we have

h(u) = h(x) + h′(x)(u− x) +
h

′′
(ς)

2!
(u− x)2

= h(x) + h′(x)(u− x) +
h

′′
(x)

2!
(u− x)2 +Υ(u, x),(4.3)

where Υ(u, x) is given by

Υ(u, x) =
h

′′
(ζ)− h

′′
(x)

2!
(u− x)2.

Applying operator Pj on equation (4.3), we obtain∣∣∣∣Pj(h;x)− h(x)− h′(x)Pj(u− x;x)− h′′

2!
Pj((u− x)2;x)

∣∣∣∣
≤ |Pj(Υ(u, x);x)|.(4.4)
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By the definition (4.1) of weighted modulus of continuity,∣∣∣∣Υ(u, x)

∣∣∣∣ ≤ 1

2!
Ω(h

′′
; |Υ− x|)(1 + (Υ− x)2)(1 + x2)(u− x)2

≤ 1

2!
Ω(h

′′
; |Υ− x|)(1 + (Υ− x)2)(1 + x2)(u− x)2

≤
(
1 +

|u− x|
δ

)
(1 + δ2)Ω(h

′′
; δ)(1 + (u− x)2)(1 + x2)(u− x)2, δ > 0

≤

 2(1 + δ2)2(1 + x2)Ω(h
′′
; δ)(u− x)2, |u− x| < δ;

2(1 + δ2)2(1 + x2)
(u− x)4

δ4
Ω(h

′′
; δ)(u− x)2, |u− x| ≥ δ

≤ 2(1 + δ2)2(1 + x2)Ω(h
′′
; δ)

(
1 +

(u− x)4

δ4

)
(u− x)2.(4.5)

Now, selecting δ < 1, from (4.5), we obtain

|Υ(u, x)| ≤ 8(1 + x2)Ω(h
′′
; δ)

(
(u− x)2 +

(u− x)2(u− x)4

δ4

)
(4.6)

Applying operator Pj on above inequality and considering Lemma 3, we obtain

|Pj(Υ(u, x);x)| ≤ 8j(1 + x2)Ω(h
′′
; δ)

(
Pj(ϑx,2(u);x) +

1

δ4
Pj(ϑx,6(u);x)

)
= 8(1 + x2)Ω(h

′′
; δ)

(
O

(
1

j

)
+

1

δ4
O

(
1

j3

))
, as j → ∞.(4.7)

Now, choosing δ =
1√
j
, we obtain

|Pj(Υ(u, x);x)| ≤ 8(1 + x2)Ω

(
h

′′
;
1√
j

)
O(1).(4.8)

On gathering (4.4), (4.8) and using Lemma 2, we show up to required outcome. �

In our next outcome we talk about Grüss-Voronovskaja type theorem for the op-

erator defined by (2.1). The difference of integral of two functions with the product

of integral of the two functions is measured by Grüss inequality [12]. The utiliza-

tion of Grüss inequality was used by Acu et al. [3] very initially, in approximation

theory. In [11], Gonska and Tachev introduced Grüss-type inequality using second

order modulus of smoothness. Gal and Gonska [10], showed Grüss-Voronovskaya

approximation for the first time using Grüss inequality for Bernstein operators and

for a class of Bernstein-Durrmeyer polynomials of real and complex variables. Tari-

boon and Ntouyas [22] introduced Grüss inequality in q-calculus. After that [[1],
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[2], [6], [5],[15] and [23]] investigated approximation results for many different linear

positive operators via Grüss-Voronovskaja theorem.

Theorem 6. The sequence of operators {Pj}j≥1 assures the resulting equality in

sense of Grüss-inequality as

lim
j→∞

j{Pj(hg;x)−Pj(h;x)Pj(g;x)} = x2h′(x)g′(x),

where h,h′,h′′, g, g′, , g′′, (hg)′, (hg)′′ ∈ Ck
σ(R+).

Proof. By a straightforward calculation, we may write

ȷ{Pj(hg;x)−Pj(h;x)Pj(g;x)}

= j

{
Pj(hg;x)− h(x)g(x)−Pj(ϑx,1(u);x)(hg)

′(x)− Pj(ϑx,2(u);x)

2!
(hg)′′(x)

−g(x)

[
Pj(h;x)− h(x)−Pj(ϑx,1(u);x)h

′(x)− Pj(ϑx,2(u);x)

2!
h′′(x)

]
−Pj(h;x)

[
Pj(g;x)− g(x)−Pj(ϑx,1(u);x)g

′(x)− Pj(ϑx,2(u);x)

2!
g′′(x)

]
+2

Pj(ϑx,2(u);x)

2!
h′(x)g′(x) + g′′(x)

Pj(ϑx,2(u);x)

2!
[h(x)−Pj(h;x)]

g′(x)Pj(ϑx,1(u);x)[h(x)−Pj(h;x)]

}
.

Now, in view of Theorem 3, it follows that Pj(h;x) → h(x), as j → ∞ and using

Theorem 5, we have

j{Pj(h;x)− h(x)−Pj(ϑx,1(u);x)h
′(x)− Pj(ϑx,2(u);x)

2!
h′′(x)} → 0 as j → ∞,

since h′,h′′ ∈ Ck
σ(R+).

Thus, using Theorems 3, 5 and Lemma 3, we obtain the required result

lim
j→∞

j{Pj(hg;x)−Pj(h;x)Pj(g;x)} = x2h′(x)g′(x).

�

5. Graphical Examples

In this module, we constructed some graphical examples in favour to show better

approximation of our modified Post-Widder operator by increasing the value of j.

To support our claim, we also presented an error table by considering the error value
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√
1

j + 1
x2 for operators Pj(.;x).

Table 2: Error table for the operators Pj(.;x)

j 1 5 10 50 100 1000 5000

error 0.707107x 0.408248x 0.301511x 0.140028x 0.0995037x 0.031607x 0.0141407x

Figure 5 Figure 6

Figure 7 Figure 8

The operators Pj(.;x) represented by blue curve and function h(x) represented

by green curve.

Figure 5 shows convergence of operators Pj(.;x) to the function h(x) = x2+x+1

for 1 ≤ j ≤ 5 and x ∈ [0, 10].

Figure 6 shows convergence of operators Pj(.;x) to the function h(x) = x2+x+1

for 10 ≤ j ≤ 100 and x ∈ [0, 10].

Figure 7 shows convergence of operators Pj(.;x) to the function h(x) = x2+x+1

for 500 ≤ j ≤ 1000 and x ∈ [0, 10].

Figure 8 shows convergence of operators Pj(.;x) to the function h(x) = x2+x+1

for 1000 ≤ j ≤ 5000 and x ∈ [0, 10].
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In view of above table and graphics we conclude that the new constructed mod-

ified Post-Widder operators Pj(.;x) show better approximation as the value of j

increases.
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12. G. Grüss: Über das Maximum des absoluten Betrages von 1
b−a

∫ b

a
f(x)g(x)dx −

1
(b−a)2

∫ b

a
f(x)dx.

∫ b

a
g(x)dx. Math. Z. 39 (1935), 215-226.

13. V. Gupta & D. Agrawal: Convergence by modified Post-Widder operators. RACSAM.

113 (2019), no. 2, 1475-1486. https://doi.org/10.1007/s13398-018-0562-4.

14. V. Gupta & G. Tachev: Some results on Post-Widder operators preserving test function

xr. Kragujevac J. Math. 46 (2022), no. 1, 149-165.

15. A. Kajla, S. Deshwal & P.N. Agrawal: Quantitative Voronovskaya and Grss-

Voronovskaya type theorems for JainDurrmeyer operators of blending type. Anal. Math.

Phys. 9 (2019), 12411263. https://doi.org/10.1007/s13324-018-0229-5.



APPROXIMATION BY MODIFIED POST-WIDDER OPERATORS 81

16. C.P. May: Saturation and inverse theorems for combinations of a class of exponential

type operators. Canad. J. Math. 28 (1976), 1224-1250.

17. R.K.S. Rathore & O.P. Singh: On convergence of derivatives of Post-Widderoperators.

Indian J. Pure Appl. Math. 11 (1980), 547-561.

18. R.K. Srivastav & S. Deshwal: Convergence : new Post-Widder operators. Int. J. Math.

Trends Tech. 67 (2021), no. 2, 43-52.

19. G. Prasad: Coincidence points of relational Ψ-contractions and an application. Afr.

Math. 32 (2021), no. 6-7, 1475-1490.

20. L. Rempulska & M. Skorupka: On strong approximation applied to Post-Widder op-

erators. Anal. Theory Appl. 22 (2006), 172-182.
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