DOI QR코드

DOI QR Code

Composite effects of circular concrete-filled steel tube columns under lateral shear load

  • Faxing Ding (School of Civil Engineering, Central South University) ;
  • Changbin Liao (School of Civil Engineering, Central South University) ;
  • Chang He (School of Civil Engineering, Central South University) ;
  • Wei Gao (School of Civil Engineering, Central South University) ;
  • Liping Wang (School of Civil Engineering, Central South University) ;
  • Fei Lyu (School of Civil Engineering, Central South University) ;
  • Yuanguang Qiu (China Railway Urban Construction Group Co., Ltd.) ;
  • Jianjun Yang (China Railway Urban Construction Group Co., Ltd.)
  • 투고 : 2022.01.06
  • 심사 : 2022.12.06
  • 발행 : 2023.02.25

초록

To fully understand shear mechanisms and composite effects of circular concrete-filled steel tube (CFST) columns, systematic numerical investigations were conducted in this paper by improved finite element models. The triaxial plastic-damage constitutive model of the concrete and the interactions between the concrete and steel tube were considered. Afterwards, the critical and upper bound shear span ratios of the circular CFST column under lateral shear loading were determined. The composite effects between the two materials were analyzed by comparing the shear resistance with plain concrete column and hollow steel tube. In addition, a method that predicts the shear bearing capacity of a circular CFST column was proposed. The confining effects on the concrete core and the restraining effects on the steel tube were considered in this method. The proposed formula can predict more accurate results than the methods in different codes and references.

키워드

과제정보

This study was financially supported by the National Natural Science Foundation of China (Grant No. 51978664) and the Science Fund for Distinguished Young Scholars of Hunan (Grant No. 2019JJ20029). Both grants are greatly appreciated.

참고문헌

  1. Abaqus (2010), Cooperation Dassault Simulia, Abaqus/CAE user's Manual (Version 6.10), USA.
  2. AISC 360-16 (2016), Specification for Structural Steel Buidings, American Institute of Steel Construction, Chicago, Illinoies, USA.
  3. Aslani, F., Uy, B. and Tao, Z. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967.
  4. Cai, J., Liang, W. and Lin, H. (2012), "Experimental study on shear resistance performance of concrete filled square steel tubular columns", J. Shenzhen Univ. Sci. Eng., 29, 189-194. https://doi.org/10.3724/SP.J.1249.2012.03189.
  5. Chang, X., Lin, H. and Huang, C. (2008), "Experimental study on shear resistance of self-stressing concrete filled circular steel tubes", J. Constr. Steel Res., 65(4), 801-807. https://doi.org/10.1016/j.jcsr.2008.12.004.
  6. Chen, J., Liu, X., Liu, H. and Zeng, L. (2018), "Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber", Steel Compos. Struct., 27(2), 193-200. https://doi.org/10.12989/scs.2018.27.2.193.
  7. DBJ13-51-2010 (2010), Technical Code for Concrete Filled Steel Tubular Structures, Housing and Urban-Rural Development of Fujian, Fuzhou, China.
  8. Ding, F., Chen, Y., Yu, Y., Wang, L. and Yu, Z. (2021a), "Composite action of rectangular concrete-filled steel tube columns under lateral shear force", Struct. Concrete, 22, 726-740. https://doi.org/10.1002/suco.202000283.
  9. Ding, F., Luo, L., Zhu, J., Wang, L. and Yu, Z. (2018), "Mechanical behavior of stirrup-confined rectangular CFST stub columns under axial compression", Thin Wall. Struct., 124, 136-150. https://doi.org/10.1016/j.tws.2017.12.007.
  10. Ding, F., Wang, E., Lyu, F., Wang, L., Yu, Y., Huang, Q. and Yu, Z. (2021b), "Composite action of steel-concrete composite beams under lateral shear force", Eng. Mech., 38(7), 86-98. https://doi.org/10.6052/j.issn.1000-4750.2020.07.0479.
  11. Ding, F., Wu, X., Xiang, P. and Yu, Z. (2021c), "New damage ratio strength criterion for concrete and lightweight aggregate concrete", ACI Struct. J., 118(6), 165-178. https://doi.org/10.14359/51732989.
  12. Ding, F., Ying, X., Zhou, L. and Yu, Z. (2011), "Unified calculation method and its application in determining the uniaxial mechanical properties of concrete", Front. Arch. Civil Eng. Chin., 5(3), 381-393. https://doi.org/10.1007/s11709-011-0118-6.
  13. Ding, F., Zhang, T., Wang, L. and Fu, F. (2017), "Behavior of concrete-filled round-ended steel tubes under bending", Steel Compos. Struct., 25(4), 457-472. https://doi.org/10.12989/scs.2017.25.4.457.
  14. Europe code 4 (2004), Design of Steel and Concrete Structures, Part1.1: General Rules and Rules for Building, European Committee for Standardization, Brussels, Belgium.
  15. Evirgen, B., Tuncan, A. and Taskin, K. (2014), "Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression", Thin Wall. Struct., 80, 46-56. https://doi.org/10.1016/j.tws.2014.02.022.
  16. Fan, Q. (2005), Mechanics of Materials, 2nd Edition, Higher education press.
  17. GB 50010-2010 (2015), Code for Design of Concrete Structure, Building Industry Press, Beijing, China.
  18. GB 50936-2014 (2014), Technical Code for Concrete Filled Steel Tubular Structure, China Building Industry Press, Beijing, China.
  19. GB50017-2017 (2017), Standard for Design of Steel Structures, Building Industry Press, Beijing, China.
  20. Han, L., Tao, Z. and Yao, G. (2008), "Behaviour of concrete-filled steel tubular members subjected to shear and constant axial compression", Thin Wall. Struct., 46, 765-780. https://doi.org/10.1016/j.tws.2008.01.026.
  21. Hassanein, M.F. and Kharoob, O.F. (2014), "Compressive strength of circular concrete-filled double skin tubular short columns", Thin Wall. Struct., 77, 165-173. https://doi.org/10.1016/j.tws.2013.10.004.
  22. Kim, J.K., Kwak, H.G. and Kwak, J.H. (2013), "Behavior of hybrid double skin concrete filled circular steel tube columns", Steel Compos. Struct., 14(14), 191-204. https://doi.org/10.12989/scs.2013.14.2.191.
  23. Lehman, D., Roeder, C., Heid, A., Maki, T. and Khaleghi, B. (2018), "Shear response of concrete filled tubes part 1: Experiments", J. Constr. Steel Res., 150, 528-540. https://doi.org/10.1016/j.jcsr.2018.08.027.
  24. Liu, D., Li, H. and Ren, H. (2020b), "Study on the performance of concrete-filled steel tube beam-column joints of new types", Comput. Concrete, 26(6), 547-563. https://doi.org/10.12989/cac.2020.26.6.547.
  25. Liu, D., Liang, J., Zhang, G. and Wang J. (2020a), "Effect of crumb rubber on compressive behaviour of CRCFST stub columns", Comput. Concrete, 25(3), 267-272. https://doi.org/10.12989/cac.2020.25.3.267.
  26. Liu, J., Ding, F., Liu, X., Yu, Z. and Huang, Z. (2019), "Flexural capacity of steel-concrete composite beams under hogging moment", Adv. Civil Eng., 2019, 3453274. https://doi.org/10.1155/2019/3453274.
  27. Luat, N.V., Lee, J. Lee, D. and Lee, K. (2020), "GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading", Comput. Concrete, 25(1), 1-14. https://doi.org/10.12989/cac.2020.25.1.001.
  28. Mansouri, A. (2020), "Shear strength of concrete-filled steel tubes based on experimental results", ASCE J. Struct. Eng., 146(6), 04020097. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002646.
  29. Meih, M. (2012), "On the performance of circular concrete-filled high strength steel columns under axial loading", Alex. Eng. J., 51(2), 109-119. https://doi.org/10.1016/j.aej.2012.05.006.
  30. Moon, J., Roeder, C.W. and Lehman, D.E. (2012), "Analytical modeling of bending of circular concrete filled steel tubes", Eng. Struct., 42(7), 58-66. https://doi.org/10.1016/j.engstruct.2012.04.028.
  31. Qian, J., Cui, Y. and Fang, X. (2007), "Shear strength tests of concrete filled steel tube columns", Chin. Civil Eng. J., 40(5), 1-9. https://doi.org/10.3321/j.issn:1000-131X.2007.05.001.
  32. Roeder, C., Lehman, D., Heid, A. and Maki, T. (2016), "Shear design expressions for concrete filled steel tube and reinforced concrete filled tube components", Research Report No. WA-RD 776.2; Washington State, Department of Transportation Research Office.
  33. Tomii, M. and Sakino, K. (2017), "Experimental studies on concrete filled square steel tubular beam-columns subjected to monotonic shear force and constant axial force", Transac. Arch. Inst. Jpn, 281, 81-92. https://doi.org/10.3130/aijsaxx.281.0_81.
  34. Uenaka, K. and Tsunokake, H. (2016), "Concrete filled elliptical steel tubular members with large diameter-to-thickness ratio subjected to bending", Struct., 5(2), 58-66. https://doi.org/10.1016/j.istruc.2015.08.004.
  35. Xiao, C., Cai, S., Chen, T. and Xu, C. (2012), "Experimental study on shear capacity of circular concrete filled steel tubes", Steel Compos. Struct., 13(5), 437-449. https://doi.org/10.12989/scs.2012.13.5. 437.
  36. Xiong, M., Xiong, D. and Liew J.Y.R. (2017), "Axial performance of short concrete filled steel tubes with high- and ultra-high-strength materials", Eng. Struct., 136, 494-510. https://doi.org/10.1016/j.engstruct.2017.01.037.
  37. Xu, C., Lin, H., and Huang C. (2009), "Experimental study on shear resistance of self-stressing concrete filled circular steel tubes", J. Constr. Steel Res., 65(4), 801-807. https://doi.org/10.1016/j.jcsr.2008.12.004.
  38. Xu, C., Xiao, C., Cai, S. and Luo, Y. (2005), "Experimental research on shear resistance of concrete-filled steel tube", Proceedings of the Fourth International Conference on Advances in Steel Structures, Shanghai, January.
  39. Yang, W. and Yan, S. (1991), "A study on basic shear behavior of concrete filled steel tubes", J. Harbin Arch. Civil Eng. Inst., 24(S1), 17-26.
  40. Yang, W. and Zhong S. (1992), "A research on the shear modulus of concrete filled steel tubes with simple beam experiments", J. Harbin Arch. Civil Eng. Inst., 25(4), 32-38.
  41. Ye, Y., Han, L. and Tao, Z. (2016b). "Effects of gaps on the behaviour of circular CFST members under shear", Eng. Mech., 33(S1), 62-66. https://doi.org/10.6052/j.issn.1000-4750.2015.05.S010.
  42. Ye, Y., Han, L., Tao, Z. and Guo, S. (2016a), "Experimental behaviour of concrete-filled steel tubular members under lateral shear loads", J. Constr. Steel Res., 122, 226-237. https://doi.org/10.1016/j.jcsr.2016.03.012.
  43. Yu, F., Cao, Y., Fang, Y., Zhang, Y. and Niu, K. (2020b), "Mechanical behavior of self-stressing steel slag aggregate concrete filled steel tubular short columns with different loading modes", Struct., 26, 947-957. https://doi.org/10.1016/j.istruc.2020.05.015.
  44. Yu, F., Fang, Y., Zhang, Y. and Bai, R. (2020a), "Mechanical behavior of self-stressing steel slag aggregate concrete filled steel tubular stub columns", Struct. Concrete, 21(4), 1597-1611. https://doi.org/10.1002/suco.201900363.
  45. Yu, F., Yin, L., Fang, Y. and Jiang, J. (2019), "Mechanical behavior of recycled coarse aggregates self-compacting concrete-filled steel tubular columns under eccentric compression", Struct. Concrete, 20(6), 2000-2014. https://doi.org/10.1002/suco.201900267.
  46. Zhu, Z., Zhang, L., Bai, Y., Ding, F., Liu, J. and Zhou, Z. (2016), "Mechanical performance of shear studs and application in steel-concrete composite beams", J. Central South Univ. Technol., 24(10), 2676-2687. https://doi.org/10.1007/s11771-016-3329-0.