DOI QR코드

DOI QR Code

Automated structural modal analysis method using long short-term memory network

  • Jaehyung Park (Department of Civil Engineering, Chungbuk National University) ;
  • Jongwon Jung (Department of Civil Engineering, Chungbuk National University) ;
  • Seunghee Park (School of Civil, Architectural Engineering & Landscape Architecture, Sungkyunkwan University) ;
  • Hyungchul Yoon (Department of Civil Engineering, Chungbuk National University)
  • Received : 2021.12.28
  • Accepted : 2022.08.30
  • Published : 2023.01.25

Abstract

Vibration-based structural health monitoring is used to ensure the safety of structures by installing sensors in structures. The peak picking method, one of the applications of vibration-based structural health monitoring, is a method that analyze the dynamic characteristics of a structure using the peaks of the frequency response function. However, the results may vary depending on the person predicting the peak point; further, the method does not predict the exact peak point in the presence of noise. To overcome the limitations of the existing peak picking methods, this study proposes a new method to automate the modal analysis process by utilizing long short-term memory, a type of recurrent neural network. The method proposed in this study uses the time series data of the frequency response function directly as the input of the LSTM network. In addition, the proposed method improved the accuracy by using the phase as well as amplitude information of the frequency response function. Simulation experiments and lab-scale model experiments are performed to verify the performance of the LSTM network developed in this study. The result reported a modal assurance criterion of 0.8107, and it is expected that the dynamic characteristics of a civil structure can be predicted with high accuracy using data without experts.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1A4A3033128 and NRF-2022R1C1C1003012).

References

  1. Basharat, A., Catbas, N. and Shah, M.A. (2005), "Framework for Intelligent Sensor Network with Video Camera for Structural Health Monitoring of Bridges", Proceedings of the 3rd IEEE International Conference on Pervasive Computing and Communications Workshops, Kauai, HI, USA, March.
  2. BBC News (2019), "Bridge closed because cracks in pedestals", BBC, London, UK. https://www.bbc.com/news/uk-england-london-48395371
  3. Bengio, Y., Simard, P. and Frasconi, P. (1994), "Learning Long-Term Dependencies with Gradient Descent Is Difficult", IEEE Transact. Neural Networks, 5(2), 157-166. ttps://doi.org/10.1109/72.279181
  4. Brincker, R., Zhang, L. and Andersen, P. (2001), "Modal Identification of Output-Only Systems Using Frequency Domain Decomposition", Smart Mater. Struct., 10(3), 441-445. https://doi.org/10.1088/0964-1726/10/3/303
  5. Cha, Y.-J., Choi, W. and Buyukozturk, O. (2017), "Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks", Comput.-Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
  6. Cho, K., Merrienboer, B.V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y. (2014) "Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation", Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, October.
  7. Cole Jr, H.A. (1973), "On-line failure detection and damping measurement of aerospace structures by random decrement signatures", Report No. CR-2205, NASA, Washington D.C., USA.
  8. Collins, J., Ashurst, D., Webb, J., Sparkes, P. and Ghose, A. (2019), "Guidance on hidden defects in bridges in the UK and Ireland", Proceedings of the Institution of Civil Engineers-Bridge Engineering, Vol. 172, No. 1, pp. 41-53. https://doi.org/10.1680/jbren.18.00021
  9. Deng, L., Chu, H.H., Shi, P., Wang, W. and Kong, X. (2020), "Region-based CNN method with deformable modules for visually classifying concrete cracks", Appl. Sci., 10(7), 2528. https://doi.org/10.3390/app10072528
  10. Feng, D. and Feng, M.Q. (2018), "Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection-A review", Eng. Struct., 156, 105-117. https://doi.org/10.1016/j.engstruct.2017.11.018
  11. Haberman, C. (2014), "A Disaster Brought Awareness but Little Action on Infrastructure", The New York Times, New York, NY, USA. https://www.nytimes.com/2014/03/03/us/a-disaster-bring-sawareness-but-little-action-on-infrastructure.html
  12. Harlan, C. and Selk, A. (2018), "'Should not happen': Italian officials look for answers after dozens dead in bridge collapse", The Washington Post, Washington D.C., USA. https://www.washingtonpost.com/news/worldviews/wp/2018/08/14/immense-tragedy-feared-as-highway-bridge-collapses-over-italian-city/
  13. Hochreiter, S. (1998), "The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions", Int. J. Uncertain. Fuzz. Knowledge-Based Syst., 06(02), 107-116. https://doi.org/10.1142/S0218488598000094
  14. Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Computat., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  15. Ibrahim, S.R. and Pappa, R.S. (1982), "Large Modal Survey Testing Using the Ibrahim Time Domain Identification Technique", J. Spacecr. Rockets, 19(5), 459-465. https://doi.org/10.2514/3.62285
  16. Jin, S.S., Jeong, S., Sim, S.H., Seo, D.W. and and Park, Y.S. (2021), "Fully automated peak-picking method for an autonomous stay-cable monitoring system in cable-stayed bridges", Automat. Constr., 126, 103628. https://doi.org/10.1016/j.autcon.2021.103628
  17. Juang, J.-N. and Pappa, R.S. (1985), "An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction", J. Guidance Control Dyn., 8(5), 620-627. https://doi.org/10.2514/3.20031
  18. Jung, H.J., Lee, J.H., Yoon, S. and Kim, I.H. (2019), "Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669
  19. Khuc, T. and Catbas, F.N. (2017), "Completely contactless structural health monitoring of real-life structures using cameras and computer vision", Struct. Control Health Monitor., 24(1), 1852. https://doi.org/10.1002/stc.1852
  20. Kim, H. and Sim, S.H. (2019), "Automated peak picking using region-based convolutional neural network for operational modal analysis", Struct. Control Health Monitor., 26(11). https://doi.org/10.1002/stc.2436
  21. Korean Law Information Center (2016), Special Act on the Safety Control and Maintenance of Establishments; Ministry of Land, Infrastructure and Transport, Seoul, Korea. https://www.law.go.kr/LSW/eng/engLsSc.do?menuId=2&query=safety#liBgcolor6.
  22. Lee, J.H., Park, J.J. and Yoon, H. (2020), "Automatic Bridge Design Parameter Extraction for Scan-to-BIM", Appl. Sci., 10(20), 7346. https://doi.org/10.3390/app10207346
  23. Lim, J. and Yoon, H. (2022). "Vision-based Input-Output System identification for pedestrian suspension bridges", Smart Struct. Syst., Int. J., 29(5), 715-728. https://doi.org/10.12989/sss.2022.29.5.715
  24. Lopez-Pacheco, M., Morales-Valdez, J. and Yu, W. (2020), "Frequency domain CNN and dissipated energy approach for damage detection in building structures", Soft Comput., 24(20), 15821-15840. https://doi.org/10.1007/s00500-020-04912-w
  25. Lydon, D., Taylor, S.E., Lydon, M., Martinez del Rincon, J. and Hester, D. (2019), "Development and testing of a composite system for bridge health monitoring utilizing computer vision and deep learning", Smart Struct. Syst., Int. J., 24(6), 723-732. https://doi.org/10.12989/sss.2019.24.6.723
  26. Lynch, J.P. (2006), "A summary review of wireless sensors and sensor networks for structural health monitoring", Shock Vib. Digest, 38(2), 91-128. https://doi.org/10.1177/0583102406061499
  27. Lindblom, M. (2020), "West Seattle Bridge closes tonight for repairs that could take months", The Seattle Times, Seattle, WA, USA. https://www.seattletimes.com/seattle-news/transportation/the-west-seattle-bridge-closes-tonight-for-major-repairs-that-could-take-several-weeks/
  28. Narazaki, Y., Hoskere, V., Hoang, T.A., Fujino, Y., Sakurai, A. and Spencer Jr, B.F. (2020), "Vision-based automated bridge component recognition with high-level scene consistency", Comput.-Aided Civil Infrastr. Eng., 35(5), 465-482. https://doi.org/10.1111/mice.12505
  29. Nasimi, R. and Moreu, F. (2021), "A methodology for measuring the total displacements of structures using a laser-camera system", Comput.-Aided Civil Infrastr. Eng., 36(4), 421-437. https://doi.org/10.1111/mice.12652
  30. Nex, F., Duarte, D., Tonolo, F.G. and Kerle, N. (2019), "Structural building damage detection with deep learning: Assessment of a state-of-the-art CNN in operational conditions", Remote Sensing, 11(23), 2765. https://doi.org/10.3390/rs11232765
  31. Pastor, M., Binda, M. and Harcarik, T. (2012), "Modal Assurance Criterion", Procedia Eng., 48, 543-548. https://doi.org/10.1016/j.proeng.2012.09.551
  32. Qi, Y., Kong, Q., Xiong, B. and Li, P. (2021), "A deep learning-based vision enhancement method for UAV assisted visual inspection of concrete cracks", Smart Struct. Syst., Int. J., 27(6), 1031-1040. https://doi.org/10.12989/sss.2021.27.6.1031
  33. Shen, Y., Fu, W., Luo, Y., Yun, C., Liu, D., Yang, P., Yang, G. and Zhou, G. (2021), "Implementation of SHM system for Hangzhou East Railway Station using a wireless sensor network", Smart Struct. Syst., Int. J., 27(1), 19-33. https://doi.org/10.12989/sss.2021.27.1.019
  34. Special Act on the Safety Control and Maintenance of Establishments, Act No. 17946, 16, Mar 2021. https://www.law.go.kr/LSW/eng/engLsSc.do?menuId=2&query=safety#AJAX
  35. Spencer Jr, B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart Sensing Technology: Opportunities and Challenges", Struct. Control Health Monitor., 11(4), 349-368. https://doi.org/10.1002/stc.48
  36. Spencer Jr, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. Advances in computer vision-based civil infrastructure inspection and monitoring https://doi.org/10.1016/j.eng.2018.11.030
  37. Sun, F.P., Chaudhry, Z.A., Rogers, C.A., Majmundar, M. and Liang, C. (1995), "Automated real-time structure health monitoring via signature pattern recognition", Smart Struct. Mater., 2443, 236-247. https://doi.org/10.1117/12.208261
  38. Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-586. https://doi.org/10.12989/sss.2019.24.5.567
  39. Yoon, H., Elanwar, H., Choi, H., Golparvar-Fard, M. and Spencer, B.F. (2016), "Target-free approach for vision-based structural system identification using consumer-grade cameras", Struct. Control Health Monitor., 23(12), 1405-1416. https://doi.org/10.1002/stc.1850
  40. Yoon, H., Shin, J. and Spencer, B.F. (2018), "Structural displacement measurement using an unmanned aerial system", Comput.-Aided Civil Infrastr. Eng., 33(3), 183-192. https://doi.org/10.1111/mice.12338
  41. Zhang, A., Wang, K.C.P., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q. and Chen, C. (2017), "Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network", Comput.-Aided Civil Infrastr. Eng., 32(10), 805-819. https://doi.org/10.1111/mice.12297