Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1A4A3033128 and NRF-2022R1C1C1003012).
References
- Basharat, A., Catbas, N. and Shah, M.A. (2005), "Framework for Intelligent Sensor Network with Video Camera for Structural Health Monitoring of Bridges", Proceedings of the 3rd IEEE International Conference on Pervasive Computing and Communications Workshops, Kauai, HI, USA, March.
- BBC News (2019), "Bridge closed because cracks in pedestals", BBC, London, UK. https://www.bbc.com/news/uk-england-london-48395371
- Bengio, Y., Simard, P. and Frasconi, P. (1994), "Learning Long-Term Dependencies with Gradient Descent Is Difficult", IEEE Transact. Neural Networks, 5(2), 157-166. ttps://doi.org/10.1109/72.279181
- Brincker, R., Zhang, L. and Andersen, P. (2001), "Modal Identification of Output-Only Systems Using Frequency Domain Decomposition", Smart Mater. Struct., 10(3), 441-445. https://doi.org/10.1088/0964-1726/10/3/303
- Cha, Y.-J., Choi, W. and Buyukozturk, O. (2017), "Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks", Comput.-Aided Civil Infrastr. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Cho, K., Merrienboer, B.V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y. (2014) "Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation", Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, October.
- Cole Jr, H.A. (1973), "On-line failure detection and damping measurement of aerospace structures by random decrement signatures", Report No. CR-2205, NASA, Washington D.C., USA.
- Collins, J., Ashurst, D., Webb, J., Sparkes, P. and Ghose, A. (2019), "Guidance on hidden defects in bridges in the UK and Ireland", Proceedings of the Institution of Civil Engineers-Bridge Engineering, Vol. 172, No. 1, pp. 41-53. https://doi.org/10.1680/jbren.18.00021
- Deng, L., Chu, H.H., Shi, P., Wang, W. and Kong, X. (2020), "Region-based CNN method with deformable modules for visually classifying concrete cracks", Appl. Sci., 10(7), 2528. https://doi.org/10.3390/app10072528
- Feng, D. and Feng, M.Q. (2018), "Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection-A review", Eng. Struct., 156, 105-117. https://doi.org/10.1016/j.engstruct.2017.11.018
- Haberman, C. (2014), "A Disaster Brought Awareness but Little Action on Infrastructure", The New York Times, New York, NY, USA. https://www.nytimes.com/2014/03/03/us/a-disaster-bring-sawareness-but-little-action-on-infrastructure.html
- Harlan, C. and Selk, A. (2018), "'Should not happen': Italian officials look for answers after dozens dead in bridge collapse", The Washington Post, Washington D.C., USA. https://www.washingtonpost.com/news/worldviews/wp/2018/08/14/immense-tragedy-feared-as-highway-bridge-collapses-over-italian-city/
- Hochreiter, S. (1998), "The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions", Int. J. Uncertain. Fuzz. Knowledge-Based Syst., 06(02), 107-116. https://doi.org/10.1142/S0218488598000094
- Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Computat., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Ibrahim, S.R. and Pappa, R.S. (1982), "Large Modal Survey Testing Using the Ibrahim Time Domain Identification Technique", J. Spacecr. Rockets, 19(5), 459-465. https://doi.org/10.2514/3.62285
- Jin, S.S., Jeong, S., Sim, S.H., Seo, D.W. and and Park, Y.S. (2021), "Fully automated peak-picking method for an autonomous stay-cable monitoring system in cable-stayed bridges", Automat. Constr., 126, 103628. https://doi.org/10.1016/j.autcon.2021.103628
- Juang, J.-N. and Pappa, R.S. (1985), "An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction", J. Guidance Control Dyn., 8(5), 620-627. https://doi.org/10.2514/3.20031
- Jung, H.J., Lee, J.H., Yoon, S. and Kim, I.H. (2019), "Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective", Smart Struct. Syst., Int. J., 24(5), 669-681. https://doi.org/10.12989/sss.2019.24.5.669
- Khuc, T. and Catbas, F.N. (2017), "Completely contactless structural health monitoring of real-life structures using cameras and computer vision", Struct. Control Health Monitor., 24(1), 1852. https://doi.org/10.1002/stc.1852
- Kim, H. and Sim, S.H. (2019), "Automated peak picking using region-based convolutional neural network for operational modal analysis", Struct. Control Health Monitor., 26(11). https://doi.org/10.1002/stc.2436
- Korean Law Information Center (2016), Special Act on the Safety Control and Maintenance of Establishments; Ministry of Land, Infrastructure and Transport, Seoul, Korea. https://www.law.go.kr/LSW/eng/engLsSc.do?menuId=2&query=safety#liBgcolor6.
- Lee, J.H., Park, J.J. and Yoon, H. (2020), "Automatic Bridge Design Parameter Extraction for Scan-to-BIM", Appl. Sci., 10(20), 7346. https://doi.org/10.3390/app10207346
- Lim, J. and Yoon, H. (2022). "Vision-based Input-Output System identification for pedestrian suspension bridges", Smart Struct. Syst., Int. J., 29(5), 715-728. https://doi.org/10.12989/sss.2022.29.5.715
- Lopez-Pacheco, M., Morales-Valdez, J. and Yu, W. (2020), "Frequency domain CNN and dissipated energy approach for damage detection in building structures", Soft Comput., 24(20), 15821-15840. https://doi.org/10.1007/s00500-020-04912-w
- Lydon, D., Taylor, S.E., Lydon, M., Martinez del Rincon, J. and Hester, D. (2019), "Development and testing of a composite system for bridge health monitoring utilizing computer vision and deep learning", Smart Struct. Syst., Int. J., 24(6), 723-732. https://doi.org/10.12989/sss.2019.24.6.723
- Lynch, J.P. (2006), "A summary review of wireless sensors and sensor networks for structural health monitoring", Shock Vib. Digest, 38(2), 91-128. https://doi.org/10.1177/0583102406061499
- Lindblom, M. (2020), "West Seattle Bridge closes tonight for repairs that could take months", The Seattle Times, Seattle, WA, USA. https://www.seattletimes.com/seattle-news/transportation/the-west-seattle-bridge-closes-tonight-for-major-repairs-that-could-take-several-weeks/
- Narazaki, Y., Hoskere, V., Hoang, T.A., Fujino, Y., Sakurai, A. and Spencer Jr, B.F. (2020), "Vision-based automated bridge component recognition with high-level scene consistency", Comput.-Aided Civil Infrastr. Eng., 35(5), 465-482. https://doi.org/10.1111/mice.12505
- Nasimi, R. and Moreu, F. (2021), "A methodology for measuring the total displacements of structures using a laser-camera system", Comput.-Aided Civil Infrastr. Eng., 36(4), 421-437. https://doi.org/10.1111/mice.12652
- Nex, F., Duarte, D., Tonolo, F.G. and Kerle, N. (2019), "Structural building damage detection with deep learning: Assessment of a state-of-the-art CNN in operational conditions", Remote Sensing, 11(23), 2765. https://doi.org/10.3390/rs11232765
- Pastor, M., Binda, M. and Harcarik, T. (2012), "Modal Assurance Criterion", Procedia Eng., 48, 543-548. https://doi.org/10.1016/j.proeng.2012.09.551
- Qi, Y., Kong, Q., Xiong, B. and Li, P. (2021), "A deep learning-based vision enhancement method for UAV assisted visual inspection of concrete cracks", Smart Struct. Syst., Int. J., 27(6), 1031-1040. https://doi.org/10.12989/sss.2021.27.6.1031
- Shen, Y., Fu, W., Luo, Y., Yun, C., Liu, D., Yang, P., Yang, G. and Zhou, G. (2021), "Implementation of SHM system for Hangzhou East Railway Station using a wireless sensor network", Smart Struct. Syst., Int. J., 27(1), 19-33. https://doi.org/10.12989/sss.2021.27.1.019
- Special Act on the Safety Control and Maintenance of Establishments, Act No. 17946, 16, Mar 2021. https://www.law.go.kr/LSW/eng/engLsSc.do?menuId=2&query=safety#AJAX
- Spencer Jr, B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart Sensing Technology: Opportunities and Challenges", Struct. Control Health Monitor., 11(4), 349-368. https://doi.org/10.1002/stc.48
- Spencer Jr, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. Advances in computer vision-based civil infrastructure inspection and monitoring https://doi.org/10.1016/j.eng.2018.11.030
- Sun, F.P., Chaudhry, Z.A., Rogers, C.A., Majmundar, M. and Liang, C. (1995), "Automated real-time structure health monitoring via signature pattern recognition", Smart Struct. Mater., 2443, 236-247. https://doi.org/10.1117/12.208261
- Ye, X.W., Jin, T. and Yun, C.B. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst., Int. J., 24(5), 567-586. https://doi.org/10.12989/sss.2019.24.5.567
- Yoon, H., Elanwar, H., Choi, H., Golparvar-Fard, M. and Spencer, B.F. (2016), "Target-free approach for vision-based structural system identification using consumer-grade cameras", Struct. Control Health Monitor., 23(12), 1405-1416. https://doi.org/10.1002/stc.1850
- Yoon, H., Shin, J. and Spencer, B.F. (2018), "Structural displacement measurement using an unmanned aerial system", Comput.-Aided Civil Infrastr. Eng., 33(3), 183-192. https://doi.org/10.1111/mice.12338
- Zhang, A., Wang, K.C.P., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J.Q. and Chen, C. (2017), "Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network", Comput.-Aided Civil Infrastr. Eng., 32(10), 805-819. https://doi.org/10.1111/mice.12297