DOI QR코드

DOI QR Code

Assessment of steel structures designed for progressive collapse under localized fires

  • Behrouz Behnam (School of Civil and Environmental Engineering, Amirkabir University of Technology)
  • Received : 2021.08.21
  • Accepted : 2023.01.19
  • Published : 2023.01.25

Abstract

Structural design against the progressive collapse has been a vital necessity for decades due to occasional tragic events. The question of whether designed structures against the progressive collapse are still robust if subjected to multi-hazard scenarios containing column removal and successive localized fires is ad-dressed in the current study. Two seven-story steel structures with an identical area but different structural configurations of 4- and 5-bays are designed against the progressive collapse; the structural components are also fireproofed for a 60 min fire resistance. The structures are then subjected to different column re-moval scenarios over different stories followed immediately by localized fires. Results indicate that the structures are not able to keep their stability under all of the considered scenarios; the 4-bay structure is more vulnerable than the 5-bay structure. It is also indicated that upper stories are more sensitive toward the considered scenarios than lower stories. To advance structural safety, two strategies are adopted: in-creasing the thickness of the insulation materials to reduce the thermal effects, or, increasing the safety fac-tor (ΩN) of the structures when designing against the progressive collapse. As for the first strategy, provid-ing a 35% and a 25% increase in the insulation thicknesses of the structural components of the 4-bay and 5-bay structures, respectively, can prevent a progressive collapse to trigger. As for the second strategy, in-creasing ΩN by 10% can enhance the structural integrity to where no collapse occurs under all of the sce-narios.

Keywords

References

  1. Adam, J.M., Parisi, F., Sagaseta, J. and Lu, X. (2018), "Research and practice on progressive collapse and robustness of building structures in the 21st century", Eng. Struct., 173, 122-149. https://doi.org/10.1016/j.engstruct.2018.06.082.
  2. ASCE (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, Reston, VA, American Society of Civil Engineers.
  3. Banh, T.T. and Lee, D. (2018), "Multi-material topology optimization of Reissner-Mindlin plates using MITC4", Steel Compos. Struct., 27(1), 27-33. https://doi.org/10.12989/scs.2018.27.1.027.
  4. Behnam, B. (2018), "Fire structural response of the plasco building: A preliminary investigation report", Int. J. Civil Eng., 17(5), 563-580. https://doi.org/10.1007/s40999-018-0332-x.
  5. Behnam, B. and Abolghasemi, S. (2019), "Post-earthquake fire performance of a generic fireproofed steel moment resisting structure", J. Earthq. Eng., 23, 1-26. https://doi.org/10.1080/13632469.2019.1628128.
  6. Behnam, B., Shojaei, F. and Ronagh, H.R. (2019), "Seismic progressive-failure analysis of tall steel structures under beam-removal scenarios", Front. Struct. Civil Eng., 13(4), 904-917. https://doi.org/10.1007/s11709-019-0525-7.
  7. Bletzinger, K.U., Bischoff, M. and Ramm, E. (2000), "A unified approach for shear-locking-free triangular and rectangular shell finite elements", Comput. Struct., 75(3), 321-334. https://doi.org/10.1016/S0045-7949(99)00140-6.
  8. Cassiano, D., D'Aniello, M., Rebelo, C., Landolfo, R. and da Silva, L.S. (2016), "Influence of seismic design rules on the robustness of steel moment resisting frames", Steel Compos. Struct., 21(3), 479-500. https://doi.org/10.12989/scs.2016.21.3.479.
  9. CEN, E. (1993), Eurocode 3, Design of Steel Structures, Part 1- 9, General Rules and Rules for Buildings, European Commitee for Standardization.
  10. Dimyadi, J., Spearpoint, M. and Amor, R. (2008), "Sharing building information using the IFC data model for FDS fire simulation".
  11. Eng, T. (2011), PyroSim User Manual, The RJA Group Inc, Chicago, USA.
  12. Franssen, J.M. and Gernay, T. (2017), "Modeling structures in fire with SAFIR®: Theoretical background and capabilities", J. Struct. Fire Eng., 8(3), 300-323. https://doi.org/10.1108/JSFE-07-2016-0010.
  13. Fu, F. (2009), "Progressive collapse analysis of high-rise building with 3-D finite element modeling method", J. Construct. Steel Res., 65(6), 1269-1278. https://doi.org/10.1016/j.jcsr.2009.02.001.
  14. Grierson, D.E., Safi, M., Xu, L. and Liu, Y. (2005), "Simplified methods for progressive-collapse analysis of buildings", In Structures Congress 2005, Metropolis and Beyond, 1-8.
  15. Gross, J. and McGuire, W. (1983), "Progressive collapse resistant design", J. Struct. Eng., 109(1), 1-15. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:1(1).
  16. Hasemi, Y. and Tokunaga, R. (1984), "Flame geometry effects on the buoyant plumes from turbulent diffusion flames", Fire Sci. Technol., 4(1), 15-26. https://doi.org/10.3210/fst.4.15.
  17. Hasemi, Y., Yokobayashi, S., Wakamatsu, T. and Ptchelintsev, A. (1995), "Fire safety of building components exposed to a localized fire: Scope and experiments on ceiling/beam system exposed to a localized fire", Proceedings of ASIAFLAM, 351-361.
  18. Heskestad, G. (1988), "Fire plumes, flame height, and air entrainment", The SFPE Handbook of Fire Protection Engineering.
  19. Holicky, M., Meterna, A., Sedlacek, G. and Schleich, J.B. (2005), Implementation of Eurocodes, Handbook 5, Design of Buildings for the Fire Situation. Leonardo da Vinci Pilot Project: Luxemboug.
  20. Huang, Z., Burgess, I.W. and Plank, R.J. (1999), "The influence of shear connectors on the behaviour of composite steel-framed buildings in fire", J. Construct. Steel Res., 51(3), 219-237. https://doi.org/10.1016/S0143-974X(99)00028-0.
  21. Irschik, H. (1991), "Analogy between refined beam theories and the Bernoulli-Euler theory", Int. J. Solids Struct., 28(9), 1105-1112. https://doi.org/10.1016/0020-7683(91)90105-O.
  22. Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. and Nethercot, D.A. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss-Part I: Simplified assessment framework", Eng. Struct., 30(5), 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011.
  23. Jiang, J., Cai, W., Li, G. Q., Chen, W. and Ye, J. (2020), "Progressive collapse of steel-framed gravity buildings under parametric fires", Steel Compos. Struct., 36(4), 383-398. https://doi.org/10.12989/scs.2020.36.4.383.
  24. Kim, J. and An, D. (2009), "Evaluation of progressive collapse potential of steel moment frames considering catenary action", Struct. Des. Tall Spec. Build., 18(4): 455-465. https://doi.org/10.1002/tal.448.
  25. Kim, J. and Kim, T. (2009), "Assessment of progressive collapse-resisting capacity of steel moment frames", J. Construct. Steel Res., 65(1), 169-179. https://doi.org/10.1016/j.jcsr.2008.03.020
  26. Xin-zheng, L., Xu-chuan, L., Lie-ping, Y., Yi, L. and Dai-yuan, T. (2010), "Numerical models for earthquake induced progressive collapse of high-rise buildings", 工程力学, 27(11), 64-070. http://dx.doi.org/10.6052/j.issn.1000-4750.2010.02.0101.
  27. Mazza, F. (2015), "Seismic vulnerability and retrofitting by damped braces of fire-damaged rc framed buildings", Eng. Struct., 101, 179-192. https://doi.org/10.1016/j.engstruct.2015.07.027.
  28. Mazza, F. (2017), "Residual seismic load capacity of fire-damaged rubber bearings of r.c. base-isolated buildings", Eng. Fail. Anal., 79, 951-970. https://doi.org/10.1016/j.engfailanal.2017.06.011.
  29. Micallef, K., Sagaseta, J., Ruiz, M.F. and Muttoni, A. (2014), "Assessing punching shear failure in reinforced concrete flat slabs subjected to localised impact loading", Int. J. Impact Eng., 71, 17-33. https://doi.org/10.1016/j.ijimpeng.2014.04.003.
  30. Quiel, S. and Marjanishvili, S. (2012), "Fire resistance of a damaged steel building frame designed to resist progressive collapse", J. Perform. Construct. Facilities, 26(4), 402-409. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000248.
  31. Shan, S. and Li, S. (2020), "Fire-induced progressive collapse mechanisms of steel frames with partial infill walls", Structures, 25, 347-359. https://doi.org/10.1016/j.istruc.2020.03.023.
  32. Sun, R., Huang, Z. and Burgess, I.W. (2012), "Progressive collapse analysis of steel structures under fire conditions", Eng. Struct., 34, 400-413. https://doi.org/10.1016/j.engstruct.2011.10.009.
  33. Sun, Y. and Li, Q. (2018), "Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling", Int. J. Impact Eng., 112, 74-115. https://doi.org/10.1016/j.ijimpeng.2017.10.006.
  34. Tang, H., Deng, X., Jia, Y., Xiong, J. and Peng, C. (2019), "Study on the progressive collapse behavior of fully bolted RCS beam-to-column connections", Eng. Struct., 199, 109618. https://doi.org/10.1016/j.engstruct.2019.109618.
  35. Tian, L.M., Wei, J.P. and Hao, J.P. (2019), "Optimisation of long-span single-layer spatial grid structures to resist progressive collapse", Eng. Struct., 188, 394-405. https://doi.org/10.1016/j.engstruct.2019.03.025.
  36. UFC (2009), Design of Buildings to Resist Progressive Collapse, Unified Facilities Criteria. Washington (DC), Dept. of Defense: 245.
  37. Wang, F., Yang, J. and Pan, Z. (2020), "Progressive collapse behaviour of steel framed substructures with various beam-column connections, Eng. Fail. Anal., 109, 104399. https://doi.org/10.1016/j.engfailanal.2020.104399.
  38. Wang, J., Uy, B., Li, D. and Song, Y. (2020), "Progressive collapse analysis of stainless steel composite frames with beam-to-column endplate connections", Steel Compos. Struct., 36(4), 427-446. https://doi.org/10.12989/scs.2020.36.4.427.
  39. Xin-zheng, L., Xu-chuan, L., Lie-ping, Y., Yi, L. and Dai-yuan, T. (2010), "Numerical models for earthquake induced progressive collapse of high-rise buildings", 工程力学, 27(11), 64-070. https://doi.org/10.6052/j.issn.1000-4750.2010.02.0101.
  40. Zhang, Y.G., Zhou, H.T. and Wu, J.Z. (2013), "Mechanism of progressive collapse of spherical shell under severe earthquake", Beijing Gongye Daxue Xuebao(Journal of Beijing University of Technology), 39(4), 562-569.
  41. Zhu, Y.F., Chen, C.H., Yao, Y., Keer, L.M. and Huang, Y. (2018), "Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames", Steel Compos. Struct., 28(2), 209-221. https://doi.org/10.12989/scs.2018.28.2.479.