References
- Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng, Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.
- Aicha, K., Rabia, B., Daouadji, T.H. and Bouzidene, A. (2020), "Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions", Coupled systems mechanics, 9(6), 575-597. http://dx.doi.org/10.12989/csm.2020.9.6.575.
- Al-Osta, M.A. (2022), "An exponential-trigonometric quasi-3D HSDT for wave propagation in an exponentially graded plate with microstructural defects", Compos. Struct., 297, 115984. https://doi.org/10.1016/j.compstruct.2022.115984.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.
- Bessaim, A., Houari, M.S., Tounsi, A., Mahmoud, S.R. NS Bedia, E.A.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498.
- Burlayenko, V.N. and Sadowski, T. (2020), "Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements", Meccanica, 55, 815-832. https://doi.org/10.1007/s11012-019-01001-7.
- Chen, X., Shen, H.S. and Huang, X.H. (2022), "Thermomechanical postbuckling analysis of sandwich plates with functionally graded auxetic GRMMC core on elastic foundations", Compos. Struct., 279, 114796. https://doi.org/10.1016/j.compstruct.2021.114796.
- Dorduncu, M. (2020), "Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory", Thin-Wall. Struct., 146, 106468. https://doi.org/10.1016/j.tws.2019.106468.
- Funari, M.F., Greco, F. and Lonetti, P. (2018), "Sandwich panels under interfacial debonding mechanisms", Compos Struct, 203, 310-320, https://doi.org/10.1016/j.compstruct.2018.06.113.
- Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Neves, A.M.A., Ferreira, A.J., Carrera, E., Cinefra, M., Jorge, R. M.N. and Soares, C.M.M. (2012), "Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects", Adv. Eng. Softw., 52, 30-43. https://doi.org/10.1016/j.advengsoft.2012.05.005.
- Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.000.
- Pham, Q.H., Tran, T.T., Tran, V.K., Nguyen, P.C. and NguyenThoi, T. (2022), "Free vibration of functionally graded porous non-uniform thickness annular-nanoplates resting on elastic foundation using ES-MITC3 element", Alexandria Eng. J., 61(3), 1788-1802. https://doi.org/10.1016/j.aej.2021.06.082.
- Pham, Q.H., Tran, V.K., Tran, T.T., Nguyen-Thoi, T. and Nguyen, P.C. (2021), "A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation", Case Studies Thermal Eng., 26, 101170. https://doi.org/10.1016/j.csite.2021.101170.
- Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Singh, S.A., & Harsha, S. P. (2020), "Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method: A semi-analytical approach", Thin-Walled Structures, 150, 106668. https://doi.org/10.1016/j.tws.2020.106668.
- Sobhy, M., & Alakel Abazid, M. (2022), "Mechanical and thermal buckling of FG-GPLs sandwich plates with negative Poisson's ratio honeycomb core on an elastic substrate", Europ. Phys. J. Plus, 137(1), 1-21. https://doi.org/10.1140/epjp/s13360-021-02303-0.
- Stein, M. (1986), "Nonlinear theory for plates and shells including the effects of transverse shearing", AIAA J., 24(9), 1537-1544. https://doi.org/10.2514/3.9477.
- Swaminathan, K., Hirannaiah, S. and Rajanna, T. (2022), "Influence of porosity and nonuniform in-plane edge loads on vibration and buckling response of power law and sigmoid function based FG sandwich plates with geometrical discontinuities", Mech. Based Des. Struct. Machines, 1-33. https://doi.org/10.1080/15397734.2022.2107010.
- Thanh, C.L., Nguyen, T.N., Vu, T.H. Samir Khatir, S. and Abdel Wahab, M. (2022), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38(Suppl 1), 449-460. https://doi.org/10.1007/s00366-020-01154-0.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Van Vinh, P. (2021), "Static bending analysis of functionally graded sandwich beams using a novel mixed beam element based on first-order shear deformation theory", Forces Mech., 4, 100039. https://doi.org/10.1016/j.finmec.2021.100039.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156., https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A., (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.
- Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A., (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., https://doi.org/10.1016/j.mechmat.2020.103730.
- Ye, R., Zhao, N., Yang, D., Cui, J., Gaidai, O. and Ren, P. (2021), "Bending and free vibration analysis of sandwich plates with functionally graded soft core, using the new refined higherorder analysis model", J. Sandw. Struct. Mater., 23(2), 680-710. https://doi.org/10.1177/1099636220909763.
- Zenkour, A.M. (2013), "Bending analysis of functionally graded sandwich plates using a simple four-unknown shear and normal deformations theory", J. Sandw. Struct. Mater., 15(6), 629-656. https://doi.org/10.1177/1099636213498886.