References
- Artymiak, P., Bukowski, L., Feliks, J., Narberhaus, S. and Zenner, H. (1999), "Determination of S-N curves with the application of artificial neural networks", Fatigue Fracture Eng. Mater. Struct., 22(8), 723-728. https://doi.org/10.1046/j.1460-2695.1999.t01-1-00198.x.
- Benasciutti, D. and Tovo, R.(2005), "Spectral methods for lifetime prediction under wide-band stationary random processes", Int. J. Fatigue, 27(8), 867-877. https://doi.org/10.1016/j.ijfatigue.2004.10.007.
- Bendat, J.S. and Piersol, A.G.(1966), "Measurement and analysis of random data", Technometrics, 10(4), 869-871. https://doi.org/10.2307/1267469
- Bhadeshia, H. (2008), "Neural networks in materials science", Encyclopedia Mater. Sci. Technol., 39(10), 1-5. https://doi.org/10.1016/B978-008043152-9.02201-6.
- Chaudhury, G. (1986), "Spectral fatigue of broad-band stress spectrum with one or more peaks", Offshore Technol. Conference, Houston, Texas, USA, May.
- Dirlik, T.(1985), Application of Computers in Fatigue Analysis, University of Warwick, Coventry, England, UK.
- Du, Y.X., Jun, W., Jian, Y., Lai, Y.F. and Sun, D.H. (2020), "Experimental research on fatigue behavior of prestressed concrete beams under constant-amplitude and variable-amplitude fatigue loading", Construct. Build. Mater., 259, 30. https://doi.org/10.1016/j.conbuildmat.2020.119852.
- Durodola, J.F., Li, N., Ramachandra, S. and Thite, A.N. (2017), "A pattern recognition artificial neural network method for random fatigue loading life prediction", Int. J. Fatigue, 99, 55-67. https://doi.org/10.1016/j.ijfatigue.2017.02.003.
- Durodola, J.F., Ramachandra, S., Gerguri, S. and Fellows, N. A. (2018), "Artificial neural network for random fatigue loading analysis including the effect of mean stress", Int. J. Fatigue, 111, 321-332. https://doi.org/10.1016/j.ijfatigue.2018.02.007.
- Farley, S.J., Durodola, J.F., Fellows, N.A. and Hernandez-Gomez, L.H. (2008), "A neural network approach for locating multiple defects", Appl. Mech. Mater., 13-14, 125-131. https://doi.org/10.4028/www.scientific.net/AMM.13-14.125.
- Feng, L., Chen, X.D., Zhang, J.H., Yuan, J.Y. and Dong, W. (2021), "Fatigue behavior and prediction model of self-compacting concrete under constant amplitude load and incremental amplitude load", Int. J. Fatigue, 145(1), 106107. https://doi.org/10.1016/j.ijfatigue.2020.106107.
- Feng, L.Y. and Qian, X.D. (2019), "Rapid S-N type life estimation for low cycle fatigue of high-strength steels at a low ambient temperature", Steel Compos. Struct., 33(6), 777-792. https://doi.org/10.12989/scs.2019.33.6.777.
- Fu, T.T. and Cebon, D. (2000), "Predicting fatigue lives for bimodal stress spectral densities", Int. J. Fatigue, 22(1), 11-21. https://doi.org/10.1016/S0142-1123(99)00113-9.
- Han, Q.H., Li, J., Xu, J., Ye, F. and Lacidogna, G. (2018), "A new frequency domain method for random fatigue life estimation in a wide-band stationary Gaussian random process", Fatigue Fracture Eng. Mater. Struct., 42(10-11), 97-113. https://doi.org/10.1111/ffe.12875.
- Han, Q.H., Ye, F. and Xu, J. (2016), "Review of random fatigue research in civil engineering", J. Tianjin Univ. Sci. Technol., 49(S1), 143-151.
- Hernandez-Gomez, L.H., Durodola, J.F., Fellows, N.A. and Urriolagoitia-Calderon, G. (2006), "Locating defects using dynamic strain analysis and artificial neural networks", Appl. Mech. Mater., 3-4, 325-330. https://doi.org/10.4028/www.scientific.net/AMM.3-4.325.
- Huang, Z.Y., Wang, Q.Y., Wagner, D. and Bathias, C. (2014), "Constitutive model coupled with damage for carbon manganese steel in low cycle fatigue", Steel Compos. Struct., 17(2), 185-198. http://dx.doi.org/10.12989/scs.2014.17.2.185.
- Jiao, H., Holloway, D. and Ghazijahani, T.G. (2015), "Fatigue tests of damaged tubes under flexural loading", Steel Compos. Struct., 19(1), 223-236. http://dx.doi.org/10.12989/scs.2015.19.1.223.
- Kang, B.H., Kim, H., Kim, Y. and Kim, K.S. (2014), "Development of Fatigue Damage Model of Wide-Band Process by Artificial Neural Network", ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA, October.
- Kim, K.N., Jung, K.S. and Lee, S.H. (2009), "Prediction on the fatigue life of butt-welded specimens using artificial neural network", Steel Compos. Struct., 9(6), 557-568. http://dx.doi.org/10.12989/scs.2009.9.6.557.
- Kim, Y., Kim, H. and Ahn, I.G. (2016), "A study on the fatigue damage model for Gaussian wideband process of two peaks by an artificial neural network", Ocean Eng., 111(JAN.1), 310-322. https://doi.org/10.1016/j.oceaneng.2015.11.008.
- Liao, X.W., Wang, Y.Q., Wang, Z.Y., Feng, L.Y. and Shi, Y. J.(2019), "Effect of low temperatures on constant amplitude fatigue properties of Q345qD steel butt-welded joints", Eng. Fail. Anal., 105, 597-609. https://doi.org/10.1016/j.engfailanal.2019.07.006
- Matsubara, G. and Hayashida, A. (2021), "Fatigue life prediction for the AISI 4340 steel under multiaxial variable-amplitude loading with respect to the calculated rainflow damage based on the path length", Int. J. Fatigue, 147(3), 106181. https://doi.org/10.1016/j.ijfatigue.2021.106181.
- Matsuishi, M. and Endo, T. (1968), "Fatigue of Metals Subjected to Varying Stress", Presented to the Japan Society of Mechanical Engineers, Fukuoka, Japan, January. https://doi.org/10.1103/PhysRevSeriesI.30.62.
- Mikheevskiy, S., Glinka, G. and Cordes, T.(2015), "Total life approach for fatigue life estimation of welded structures", Procedia Eng., 101, 177-184. https://doi.org/10.1016/j.proeng.2015.02.023
- Pan, H.M. (2016), Research on Fatigue Life of Gearbox of High Speed EMU Based on Three Interval Method, Master Dissertation, Southwest Jiaotong University, Chengdu, China.
- Park, J.B., Choung, J. and Kim, K.S. (2014), "A new fatigue prediction model for marine structures subject to wide band stress process", Ocean Eng., 76, 144-151. https://doi.org/10.1016/j.oceaneng.2013.11.002.
- Petrucci, G. and Zuccarello, B. (2015), "Fatigue life prediction under wide band random loading", Fatigue Fracture Eng. Mater. Struct., 27(12), 1183-1195. https://doi.org/10.1111/j.1460-2695.2004.00847.x.
- Pujol, J.C.F. and Pinto, J.M.A. (2011), "A neural network approach to fatigue life prediction", Int. J. Fatigue, 33(3), 313-322. https://doi.org/10.1016/j.ijfatigue.2010.09.003.
- Sakai, S. and Okamura, H. (1994), "On the distribution of rainflow range for Gaussian random process with bimodal PSD", Transact. Japan Soc. Mech. Eng, A, 60(574), 1464-1469. https://doi.org/10.1299/kikaia.60.1464.
- Wang, J., Uy, B., Li, D.X. and Song, Y.C. (2020), "Fatigue behaviour of stainless steel bolts in tension and shear under constant-amplitude loading", Int. J. Fatigue, 133, 105401. https://doi.org/10.1016/j.ijfatigue.2019.105401.
- Yeter, B., Garbatov, Y. and Soares, C.G. (2015), "Fatigue damage assessment of fixed offshore wind turbine tripod support structures", Eng. Struct., 101, 518-528. https://doi.org/10.1016/j.engstruct.2015.07.038.
- Yildirim, H.C., Remes, H. and Nussbaumer, A. (2020), "Fatigue properties of as-welded and post-weld-treated high-strength steel joints: The influence of constant and variable amplitude loads", Int. J. Fatigue, 138, 105687. https://doi.org/10.1016/j.ijfatigue.2020.105687.
- Younesian, D., Solhmirzaei, A. and Gachloo, A.(2009), "Fatigue life estimation of MD36 and MD523 bogies based on damage accumulation and random fatigue theory", J. Mech. Sci. Technol., 23(8), 2149-2156. https://doi.org/10.1007/s12206-009-0622-y.
- Zhao, W. and Baker, M.J. (1990), "A new stress range distribution model for fatigue analysis under wave loading", Environ. Forces Offshore Struct. Predictions, London, UK, November.