참고문헌
- Adiyaman, G., Yaylaci, M. and Birinci, A. (2015), "Analytical and finite element solution of a receding contact problem", Struct. Eng. Mech., 54(1), 69-85. https://doi.org/10.12989/sem.2015.54.1.069.
- Chang, X. (2018), "Crack spread from a filled flaw in rocks considering the infill influences", J. Appl. Geophys., 152, 137-149. https://doi.org/10.1016/j.jappgeo.2018.03.018.
- Chen, H. and Fan, X. (2019), "Experimental and numerical study of granite blocks containing two side flaws and a tunnel-shaped opening", Theor. Appl. Fract. Mech., 104, 102394. https://doi.org/10.1016/j.tafmec.2019.102394.
- Cao, R.H., Cao, P. and Lin, H. (2018), "Failure characteristics of jointed rock-like material containing multi-joints under a compressive-shear test: Experimental and numerical analyses", Arch. Civ. Mech. Eng. 18(3) 784-798. https://doi.org/10.1016/j.acme.2017.12.003.
- Dong, T., Cao, P. and Lin, Q. (2020), "Size effect on mechanical properties of rock-like materials with three joints", Geotech. Geol. Eng., 38(11), 44-56. https://doi.org/10.1007/s10706-020-01279-5.
- Duan, H. and Jiang, Z. (2012), "New composite grouting materials: Modified urea formaldehyde resin with cement", Int. J. Min. Sci. Technol. 22(2) 195-200. https://doi.org/10.1016/j.ijmst.2011.08.009
- Gao, S. (2019), "Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion", Steel Compos. Struct., 33(4), 78-93. http://dx.doi.org/10.12989/scs.2019.33.4.615.
- Indraratna, B., Premadasa, W. and Brown, E.T. (2014), "Shear strength of rock joints influenced by compacted infill", Int. J. Rock Mech. Min. Sci., 70, 296-307. https://doi.org/10.1016/j.ijrmms.2014.04.019.
- Khosravi, A. (2016), "Effect of hydraulic hysteresis and degree of saturation of infill materials on the behavior of an infilled rock fracture", Int. J. Rock Mech. Min. Sci. 88, 105-114. https://doi.org/10.1016/j.ijrmms.2016.07.001.
- Lai, B. (2019), "Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete", Steel Compos. Struct., 33(1), 44-56. http://dx.doi.org/10.12989/scs.2019.33.1.067.
- Lin, H. and Yang, H. (2019), "Determination of the stress field and crack origination angle of an open flaw tip under uniaxial compression", Theor. Appl. Fract. Mech., 104, 102358. https://doi.org/10.1016/j.tafmec.2019.102358.
- Lin, Q., Cao, P. and Wen, G. (2021), "Crack coalescence in rock-like specimens with two dissimilar layers and pre-existing double parallel joints under uniaxial compression", Int. J. Rock Mech. Mining Sci., 139(8), 104621. https://doi.org/10.1016/j.ijrmms.2021.104621.
- Lin, Q., Cao, P. and Mao, S. (2020), "Fatigue behaviour and constitutive model of yellow sandstone containing pre-existing surface crack under uniaxial cyclic loading", Theoretic. Appl. Fract. Mech., 109(3), 99-111. https://doi.org/10.1016/j.tafmec.2020.102776.
- Lin, Q. and Cao, P. (2020), "Strength and failure characteristics of jointed rock mass with double circular holes under uniaxial compression: Insights from discrete element method modelling", Theoretic. Appl. Fract. Mech., 109(2), 66-78. https://doi.org/10.1016/j.tafmec.2020.102692.
- Lin, Q. and Cao, P. (2021), "Mechanical behaviour of a jointed rock mass with a circular hole under compression-shear loading: Experimental and numerical studies", Theoretic. Appl. Fract. Mech., 114(4), 99-112. https://doi.org/10.1016/j.tafmec.2021.102998.
- Morgan, S.P. and Johnson, C.A. (2013), "Cracking processes in Barre granite: fracture process zones and crack coalescence", Int. J. Fract., 180, 177-204. https://doi.org/10.1007/s10704-013-9810-y/
- Manouchehrian, A., Sharifzadeh, M. and Marji, M.F. (2014), "A bonded particle model for analysis of the flaw orientation effect on crack spread mechanism in brittle materials under compression", Arch. Civ. Mech. Eng. 14(1), 40-52. https://doi.org/10.1016/j.acme.2013.05.008.
- Miao, S. and Pan, P.Z. (2018), "Fracture analysis of sandstone with a single filled flaw under uniaxial compression", Eng. Fract. Mech., 204, 319-343. https://doi.org/10.1016/j.engfracmech.2018.10.009.
- Nguyen, M. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 181-193. http://dx.doi.org/10.12989/scs.2020.35.3.415.
- Naghipour, M. (2020), "Effect of progressive shear punch of a foundation on a reinforced concrete building behavior", Steel Compos. Struct., 35(2), 134-145. https://doi.org/10.12989/scs.2020.35.2.279.
- Nehrii, S. and Sakhno, S. (2018), "Analyzing kinetics of deformation of boundary rocks of mine workings", Mining Mineral Deposits, 12(4), 115-123. https://doi.org/10.15407/mining12.04.115.
- Oner, E., Yaylaci, M., and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.000.
- Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: A comparison", Int. J. Rock Mech. Min. Sci., 46(5), 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006.
- Potyondy, D.O. (2012), "A flat-jointed bonded-particle material for hard rock", Rock Mechanics/Geomechanics Symposium, Chicago, USA.
- Potyondy, D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: Current trends and future directions", Geosyst. Eng., 18(1), 1-28. https://doi.org/10.1080/12269328.2014.998346.
- Potyondy, D.O. (2017), "Simulating perforation damage with a flat-jointed bonded-particle material", The 51st US Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA.
- Sun, Y. (2021), "Interfacial behavior of segmental concrete-filled Basalt FRP tube under cyclic loading", Steel Compos. Struct., 40(1), 78-93. http://dx.doi.org/10.12989/scs.2021.40.1.065.
- Sh,a F., Lin, C., Li, Z. and Liu, R. (2019), "Reinforcement simulation of water-rich and broken rock with Portland cement-based grout", Constr. Build. Mater. 221, 292-300. https://doi.org/10.1016/j.conbuildmat.2019.06.094.
- Turetta, M. (2020), "Investigation on the flexural behavior of an innovative U-shaped steel-concrete composite beam", Steel Compos. Struct., 34(3), 111-121. http://dx.doi.org/10.12989/scs.2020.34.3.441.
- Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A., (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 55-66. https://doi.org/10.12989/cac.2020.25.6.000.
- Wang, Y., Zhang, H., Lin, H., Zhao, Y. and Liu, Y. (2020), "Fracture behavior of central-flawed rock plate under uniaxial compression", Theor. Appl. Fract. Mech., 106, 102503. https://doi.org/10.1016/j.tafmec.2020.102503.
- Xu, C.H. (2020), "Cracking and bending strength evaluations of steel-concrete double composite girder under negative bending action", Steel Compos. Struct., 35(3), 89-99. http://dx.doi.org/10.12989/scs.2020.35.3.371.
- Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 33(1), 45-59. https://doi.org/10.1016/j.mechmat.2020.103730.
- Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A. (2021a), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2021b), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210 . https://doi.org/10.12989/CAC.2021.27.3.199
- Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A., (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 23(3), 66-77. https://doi.org/10.12989/sem.2020.76.3.325.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.000.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yu, Y. (2020), "Shear behavior and shear capacity prediction of precast concrete-encased steel beams", Steel Compos. Struct., 36(3), 176-189. http://dx.doi.org/10.12989/scs.2020.36.3.261.
- Xie, Y. and Cao, P. (2016), "Influence of crack surface friction on crack origination and spread: a numerical investigation based on extended finite element method", Comput. Geotech., 74, 1-14. https://doi.org/10.1016/j.compgeo.2015.12.013.
- Zhao, Z. and Zhou, D. (2016), "Mechanical properties and failure modes of rock samples with grout-infilled flaws: A particle mechanics modeling", J. Nat. Gas Sci. Eng., 34, 702-715. https://doi.org/10.1016/j.jngse.2016.07.022.
- Zhuang, X., Chun, J. and Zhu, H. (2014), "A comparative study on unfilled and filled crack spread for rock-like brittle material", Theor. Appl. Fract. Mech., 72, 110-120. https://doi.org/10.1016/j.tafmec.2014.04.004.
- Zhong, Z., Deng, R. and Zhang, J. (2020), "Fracture properties of jointed rock infilled with mortar under uniaxial compression", Eng. Fract. Mech., 228,
- Zhang, X.P. and Wong L.N.Y. (2012), "Cracking processes in rock-like material containing a single flaw under uniaxial compression: A numerical study based on parallel bonded-particle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z.
- Zhong, Z., Deng, R., Zhang, J. and Hu, X. (2020), "Fracture properties of jointed rock infilled with mortar under uniaxial compression", Eng. Fract. Mech., 228, 106822. https://doi.org/10.1016/j.engfracmech.2019.106822.