DOI QR코드

DOI QR Code

Histone deacetylase family in balloon flower (Platycodon grandiflorus): Genome-wide identification and expression analysis under waterlogging stress

  • Min-A Ahn (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • Ga Hyeon Son (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • Tae Kyung Hyun (Department of Industrial Plant Science and Technology, Chungbuk National University)
  • Received : 2023.11.09
  • Accepted : 2023.11.24
  • Published : 2023.12.04

Abstract

Histone deacetylases (HDACs) play a pivotal role in epigenetic regulation, affecting the structure of chromatin and gene expression across different stages of plant development and in response to environmental stresses. Although the role of HDACs in Arabidopsis and rice has been focused on in extensive research, the role of the HDAC gene family in various medicinal plants remains unclear. In the genome of the balloon flower (Platycodon grandiflorus), we identified 10 putative P. grandiflorus HDAC (PlgHDAC) proteins, which were classified into the three families (RPD3/HDA1, SIR2, and HD2 HDAC families) based on their domain compositions. These HDACs were predicted to be localized in various cellular compartments, indicating that they have diverse functions. In addition, the tissue-specific expression profiles of PlgHDACs differed across different plant tissues, indicating that they are involved in various developmental processes. Furthermore, the expression levels of all PlgHDACs were upregulated in leaves after waterlogging treatment, implying their potential role in coping with waterlogging-induced stress. Overall, our findings provide a comprehensive foundation for further research into the epigenetic regulation of PlgHDACs, and particularly, on their functions in response to environmental stresses such as waterlogging. Understanding the roles of these HDACs in the development and stress responses of balloon flower could have significant implications for improving crop yield and the quality of this important medicinal plant.

Keywords

Acknowledgement

This work was conducted during the research year of Chungbuk National University in 2023.

References

  1. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487-500 https://doi.org/10.1038/nrg.2016.59
  2. de Rooij PGH, Perrella G, Kaiserli E, van Zanten M (2020) The diverse and unanticipated roles of histone deacetylase 9 in coordinating plant development and environmental acclimation. J Exp Bot 71:6211-6225 https://doi.org/10.1093/jxb/eraa335
  3. Eom SH, Hyun TK (2021) Comprehensive analysis of the histone deacetylase gene family in Chinese cabbage (Brassica rapa): from evolution and expression pattern to functional analysis of BraHDA3. Agriculture 11:244
  4. Fang H, Liu X, Thorn G, Duan J, Tian L (2014) Expression analysis of histone acetyltransferases in rice under drought stress. Biochem Biophys Res Commun 443:400-405 https://doi.org/10.1016/j.bbrc.2013.11.102
  5. Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338:17-31 https://doi.org/10.1016/j.jmb.2004.02.006
  6. Han Z, Yu H, Zhao Z, Hunter D, Luo X, Duan J, Tian L (2016) AtHD2D gene plays a role in plant growth, development, and response to abiotic stresses in Arabidopsis thaliana. Front Plant Sci 7:310
  7. Hartl M, Fussl M, Boersema PJ, Jost JO, Kramer K, Bakirbas A, Sindlinger J, Plochinger M, Leister D, Uhrig G, Moorhead GB, Cox J, Salvucci ME, Schwarzer D, Mann M, Finkemeier I (2017) Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol Syst Biol 13:949
  8. Huang L, Sun Q, Qin F, Li C, Zhao Y, Zhou DX (2007) Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol 144:1508-1519 https://doi.org/10.1104/pp.107.099473
  9. Jeon CS, Kim GH, Son KI, Hur JS, Jeon KS, Yoon JH, Koh YJ (2013) Root rot of balloon flower (Platycodon grandiflorum) caused by Fusarium solani and Fusarium oxysporum. Plant Pathol J 29:440-445 https://doi.org/10.5423/PPJ.NT.07.2013.0073
  10. Ji HS, Hyun TK (2023) Physiological and sucrose metabolic responses to waterlogging stress in balloon flower (Platycodon grandiflorus (Jacq.) A. DC). Physiol Mol Biol Plants 29:591-600 https://doi.org/10.1007/s12298-023-01310-y
  11. Jiang J, Ding AB, Liu F, Zhong X (2020) Linking signaling pathways to histone acetylation dynamics in plants. J Exp Bot 71:5179-5190 https://doi.org/10.1093/jxb/eraa202
  12. Kim J, Kang SH, Park SG, Lee Y, Kim OT, Chung O, Lee J, Choi JP, Kwon SJ, Lee K, Ahn BO, Lee DJ, Yoo Si, Shin IG, Um Y, Lee DY, Kim GS, Hong CP, Bhak J, Kim CK (2020) Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant. Hortic Res 7:1-12 https://doi.org/10.1038/s41438-020-0329-x
  13. Kim W, Latrasse D, Servet C, Zhou DX (2013) Arabidopsis histone deacetylase HDA9 regulates flowering time through repression of AGL19. Biochem Biophys Res Commun 432:394-398 https://doi.org/10.1016/j.bbrc.2012.11.102
  14. Konig AC, Hartl M, Pham PA, Laxa M, Boersema PJ, Orwat A, Kalitventseva I, Plochinger M, Braun HP, Leister D, Mann M, Wachter A, Fernie AR, Finkemeier I (2014) The Arabidopsis class II sirtuin is a lysine deacetylase and interacts with mitochondrial energy metabolism. Plant Physiol 164:1401-1414 https://doi.org/10.1104/pp.113.232496
  15. Liu X, Yang S, Zhao M, Luo M, Yu CW, Chen CY, Tai R, Wu K (2014) Transcriptional repression by histone deacetylases in plants. Mol Plant 7:764-772 https://doi.org/10.1093/mp/ssu033
  16. Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312: 1520-1523 https://doi.org/10.1126/science.1123841
  17. Lu X, Hyun TK (2021) The role of epigenetic modifications in plant responses to stress. Bot Serbica 45:3-12 https://doi.org/10.2298/BOTSERB2101003L
  18. Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Molr Cell Biol 13:436-447 https://doi.org/10.1038/nrm3382
  19. Pan J, Sharif R, Xu X, Chen X (2021) Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci 11:627331
  20. Pandey R, Muller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30:5036-5055 https://doi.org/10.1093/nar/gkf660
  21. Park SY, Kim JS (2020) A short guide to histone deacetylases including recent progress on class II enzymes. Exp Mol Med 52:204-212
  22. Peng M, Ying P, Liu X, Li C, Xia R, Li J, Zhao M (2017) Genome-wide identification of histone modifiers and their expression patterns during fruit abscission in litchi. Front Plant Sci 8:639
  23. Tang WS, Zhong L, Ding QQ, Dou YN, Li WW, Xu ZS, Zhou YB, Chen J, Chen M, Ma YZ (2022) Histone deacetylase AtSRT2 regulates salt tolerance during seed germination via repression of vesicle-associated membrane protein 714 (VAMP714) in Arabidopsis. New Phytol 234:1278-1293 https://doi.org/10.1111/nph.18060
  24. Tian L, Chen ZJ (2001) Blocking histone deacetylation in Arabidopsis induces pleiotropic effects on plant gene regulation and development. Proc Natl Acad Sci USA 98:200-205 https://doi.org/10.1073/pnas.98.1.200
  25. Tian L, Fong MP, Wang JJ, Wei NE, Jiang H, Doerge RW, Chen ZJ (2005) Reversible histone acetylation and deacetylation mediate genome-wide, promoter-dependent and locus-specific changes in gene expression during plant development. Genetics 169:337-345 https://doi.org/10.1534/genetics.104.033142
  26. Ueda M, Matsui A, Nakamura T, Abe T, Sunaoshi Y, Shimada H, Seki M (2018) Versatility of HDA19-deficiency in increasing the tolerance of Arabidopsis to different environmental stresses. Plant Signal Behav 13:e1475808
  27. Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15:626-638 https://doi.org/10.1105/tpc.007922
  28. Yang C, Shen W, Chen H, Chu L, Xu Y, Zhou X, Liu C, Chen C, Zeng J, Liu J, Li Q, Gao C, Charron JB, Luo M (2018) Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean. BMC Plant Biol 18:226
  29. Yruela I, Moreno-Yruela C, Olsen CA (2021) Zn2+-dependent histone deacetylases in plants: structure and evolution. Trends Plant Sci 26:741-757 https://doi.org/10.1016/j.tplants.2020.12.011
  30. Zhang K, Yu L, Pang X, Cao H, Si H, Zang J, Xing J, Dong J (2020) In silico analysis of maize HDACs with an emphasis on their response to biotic and abiotic stresses. PeerJ 8:e8539
  31. Zhao J, Zhang J, Zhang W, Wu K, Zheng F, Tian L, Liu X, Duan J (2015) Expression and functional analysis of the plant-specific histone deacetylase HDT701 in rice. Front Plant Sci 5:764
  32. Zhao J, Zhang W, da Silva JAT, Liu X, Duan J (2021) Rice histone deacetylase HDA704 positively regulates drought and salt tolerance by controlling stomatal aperture and density. Planta 254:79
  33. Zheng Y, Ding Y, Sun X, Xie S, Wang D, Liu X, Su L, Wei W, Pan L, Zhou DX (2016) Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. J Exp Bot 67:1703-1713 https://doi.org/10.1093/jxb/erv562
  34. Zhou C, Labbe H, Sridha S, Wang L, Tian L, Latoszek-Green M, Yang Z, Brown D, Miki B, Wu K (2004) Expression and function of HD2-type histone deacetylases in Arabidopsis development. Plant J 38:715-724 https://doi.org/10.1111/j.1365-313X.2004.02083.x