DOI QR코드

DOI QR Code

Expression Analysis of Sweetpotato Sporamin Genes in Response to Infection with the Root-Knot Nematode Meloidogyne incognita

  • Jung-Wook Yang (Department of Crop Cultivation & Environment, Research National Institute of Crop Science, RDA) ;
  • Yun-Hee Kim (Department of Biology Education, Gyeongsang National University)
  • Received : 2023.09.03
  • Accepted : 2023.09.08
  • Published : 2023.09.22

Abstract

Sweetpotato (Ipomoea batatas [L.]) is a globally important root crop cultivated for food and industrial processes. The crop is susceptible to the root-knot nematode (RKN) Meloidogyne incognita, a major plant-parasitic RKN that reduces the yield and quality of sweetpotato. Previous transcriptomic and proteomic analyses identified several genes that displayed differential expression patterns in susceptible and resistant cultivars in response to M. incognita infection. Among these, several sporamin genes were identified for RKN resilience. Sporamin is a storage protein primarily found in sweetpotato and morning glory (Ipomoea nil). In this study, transcriptional analysis was employed to investigate the role of sporamin genes in the defense response of sweetpotato against RKN infection in three susceptible and three resistant cultivars. Twenty-three sporamin genes were identified in sweetpotato and classified as group A or group B sporamin genes based on comparisons with characterized sweetpotato and Japanese morning glory sporamins. Two group A sporamin genes showed significantly elevated levels of expression in resistant but not in susceptible cultivars. These results suggest that the elevated expression of specific sporamin genes may play a crucial role in protecting sweetpotato roots from RKN infection.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2021R1A2C400188711), and the project PJ009250072013 of the National Institute of Crop Science, Rural Development Administration, Republic of Korea.

References

  1. Afuape SO, Nwankwo IIM, Omodamiro RM, Echendu TNC, Toure A (2014) Studies on some important consumer and processing traits for breeding sweet potato for varied end-uses. Am J Exp Agri 4:114-124  https://doi.org/10.9734/AJEA/2014/5827
  2. Anderson C, Pinsirodom P, Parkin KL (2002) Hydrolytic selectivity of patatin (lipid acyl hydrolase) from potato (Solanium tuberosum L.) tubers towards various lipids. J Food Biochem 26:63-74  https://doi.org/10.1111/j.1745-4514.2002.tb00050.x
  3. Bridge J, Starr JL (2010) Plant nematodes of agricultural importance a color handbook. Academic Press. San Diego pp 77-78 
  4. Cai D, Thurau T, Tian Y, Lange T, Yeh KW and Jung C (2003) Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Mol Biol 51:839-849 
  5. Castagnone-Sereno P, Danchin EG, Perfus-Barbeoch L, Abad P (2013) Diversity and evolution of root knot nematodes, genus Meloidogyne: new insights from the genomic era. Annu Rev Phytopathol 51:203-220  https://doi.org/10.1146/annurev-phyto-082712-102300
  6. Diaz JT, Chinn MS, Truong VD (2014) Simultaneous saccharification and fermentation of industrial sweetpotatoes for ethanol production and anthocyanins extraction. Indust Crops Prod 62:53-60  https://doi.org/10.1016/j.indcrop.2014.07.032
  7. Galliard T (1971) The enzymic deacylation of phospholipids and galactolipids in plants: purification and properties of a lipolytic acyl-hydrolase from potato tubers. Biochem J 121:379-390  https://doi.org/10.1042/bj1210379
  8. Grace MH, Yousef GG, Gustafson SJ, Truong VD, Yencho GC, Lila MA (2014) Phytochemical changes in phenolics, anthocyanins, ascorbic acid, and carotenoids associated with sweetpotato storage and impacts on bioactive properties. Food Chem 145:717-724  https://doi.org/10.1016/j.foodchem.2013.08.107
  9. Ha J, Won JC, Jung YH, Yang JW, Lee HU, Nam KJ, Park SC, Jeong JC, Lee SW, Lee DW, Chung JS, Lee JJ, Kim YH (2017) Comparative proteomic analysis of the response of fibrous roots of nematode-resistant and -sensitive sweet potato cultivars to root-knot nematode Meloidogyne incognita. Acta Physiol Plant 39:262 
  10. Hattori T, Nakagawa S, Nakamura K (1990) High-level expression of tuberous root storage protein genes of sweetpotato in stems of plantlets grown in in vitro on sucrose medium. Plant Mol Biol 14:595-604  https://doi.org/10.1007/BF00027505
  11. Hattori T, Yoshida N, Nakamura K (1989) Structural relationship among the members of multigene family coding for the sweetpotato tuberous roots storage proteins. Plant Mol Biol 13:563-572  https://doi.org/10.1007/BF00027316
  12. Hirschberg HJHB, Simons JWFA, Dekker N, Egmond MA (2001) Cloning, expression, purification and characterization of patatin, a novel phospholipase A. Euro J Biochem 268:5037-5044  https://doi.org/10.1046/j.0014-2956.2001.02411.x
  13. Hou WC, Chen YC, Chen HJ, Liu YH, Yang LL, Lee MH (2001) Antioxidant activities of a 33KDa root storage protein of sweet potato (Ipomoea batatas (L.) Lam cv. Tainong 57). J Agri Food Chem 49:2978-2981  https://doi.org/10.1021/jf0100705
  14. Hou WC, Lin YH (1997) Dehydroascorbate reductase and mono dehydroascorbate reductase activities of trypsin inhibitors, the major sweet potato (Ipomoea batatas [L.] Lam) root storage protein. Plant Science 128:151-158  https://doi.org/10.1016/S0168-9452(97)00153-2
  15. Hou WC, Lin YH (2002) Sweet potato (Ipomoea batatas (L.) Lam) trypsin inhibitors, the major root storage proteins, inhibit one endogenous serine protease activity. Plant Science 163:733-739  https://doi.org/10.1016/S0168-9452(02)00168-1
  16. Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla Lopez R, Palomares-Rius JE, Wesemael WML, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946-961  https://doi.org/10.1111/mpp.12057
  17. Lee IH, Kim HS, Nam KJ, Lee KL, Yang JW, Kwak SS, Lee JJ, Shim D, Kim YH (2021) The defense response involved in sweetpotato resistance to root-knot nematode Meloidogyne incognita: Comparison of root transcriptomes of resistant and susceptible sweetpotato cultivars with respect to induced and constitutive defense responses. Front Plant Sci 12:671677 
  18. Lee IH, Shim DH, Jeong JC, Sung YW, Nam KJ, Yang JW, Ha J, Lee JJ, Kim YH (2019) Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-resistant and susceptible sweetpotato cultivars. Planta 249:431-444  https://doi.org/10.1007/s00425-018-3001-z
  19. Palomares-Rius JE, Kikuchi T (2013) Omics fields of study related to plant-parasitic nematodes. J Integ Omics 3:1-10  https://doi.org/10.5584/jiomics.v3i1.120
  20. Park SC, Kim YH, Ji CY, Park S, Jeong JC, Lee HS, Kwak SS (2012) Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. Plos One 7:e51502 
  21. Racusen D (1986) Esterase specificity of patatin from two potato cultivars. Can J Bot 64:2104-2106  https://doi.org/10.1139/b86-276
  22. Senda K, Yoshioka H, Doke N, Kawakita K (1996) A cytosolic phospholipase A2 from potato tissues appears to be patatin. Plant Cell Physiology 37:347-353  https://doi.org/10.1093/oxfordjournals.pcp.a028952
  23. Senthilkumar R, Yeh KW (2012) Multiple biological functions of sporamin related to stress tolerance in sweetpotato (Ipomoea batatas Lam). Biotechnol Adv 30:1309-1317  https://doi.org/10.1016/j.biotechadv.2012.01.022
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725-2729  https://doi.org/10.1093/molbev/mst197
  25. Tonon C, Daleo G, Oliva C (2001) An acidic β-1,3 glucanase from potato tubers appears to be patatin. Plant Physiol Biochem 39:849-854  https://doi.org/10.1016/S0981-9428(01)01311-0
  26. Van Loon LC, van Strien EA (1999) The families of pathogenesis-related proteins, their activities and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85-97  https://doi.org/10.1006/pmpp.1999.0213
  27. Yao PL, Hwang MJ, Chen YM, Yeh KW (2001) Site directed mutagenesis evidence for a negatively charged trypsin inhibitory loop in sweet potato sporamin. FEBS Lett 496:134-138  https://doi.org/10.1016/S0014-5793(01)02413-9
  28. Yeh KW, Chen JC, Lin MI, Chen YM, Lin CY (1997a) Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Plant Mol Biol 33:565-570 
  29. Yeh KW, Lin MI, Tuan SJ, Chen YM, Lin CY, Kao SS (1997b) Sweet potato (Ipomoea batatas Lam.) trypsin inhibitors expressed in transgenic plants confer resistance against Spodoptera litura. Plant Cell Rep 16:696-699  https://doi.org/10.1007/s002990050304