DOI QR코드

DOI QR Code

Biomass partitioning and physiological responses of four Moroccan barley varieties subjected to salt stress in a hydroponic system

  • Said Bouhraoua (Natural Resources and Environment Laboratory, Multidisciplinary Faculty of Taza, Sidi Mohammed Ben Abdellah University) ;
  • Mohamed Ferioun (Natural Resources and Environment Laboratory, Multidisciplinary Faculty of Taza, Sidi Mohammed Ben Abdellah University) ;
  • Srhiouar Nassira (Natural Resources and Environment Laboratory, Multidisciplinary Faculty of Taza, Sidi Mohammed Ben Abdellah University) ;
  • Abdelali Boussakouran (Natural Resources and Environment Laboratory, Multidisciplinary Faculty of Taza, Sidi Mohammed Ben Abdellah University) ;
  • Mohamed Akhazzane (Sidi Mohammed Ben Abdellah University) ;
  • Douae Belahcen (Natural Resources and Environment Laboratory, Multidisciplinary Faculty of Taza, Sidi Mohammed Ben Abdellah University) ;
  • Khalil Hammani (Natural Resources and Environment Laboratory, Multidisciplinary Faculty of Taza, Sidi Mohammed Ben Abdellah University) ;
  • Said Louahlia (Natural Resources and Environment Laboratory, Multidisciplinary Faculty of Taza, Sidi Mohammed Ben Abdellah University)
  • Received : 2023.03.27
  • Accepted : 2023.04.20
  • Published : 2023.06.13

Abstract

A hydroponics experiment was performed to study the physiological and biochemical changes in Moroccan barley (Hordeum vulgare L.) varieties cultivated under salt stress conditions. Four barley varieties were grown under exposure to three salt concentrations, including 0, 200, and 300 mM NaCl. The ANOVA for both salt stress-sensitive and resistant varieties indicated that salt treatment represented the main source of variability in all studied traits. Salt treatment significantly reduced root and shoot dry weight (RDW and SDW), relative water content (RWC), and chlorophyll content (Chl a, Chl b, and Chl T). However, increases in electrolyte leakage (EL) along with proline and total soluble sugar (TSS) contents were recorded. In addition, large variations in all measured traits were found between varieties. The 'Massine' and 'Laanaceur' varieties displayed relatively higher RDW and SDW values. The 'Amira' and 'Adrar' varieties showed lower RWC values and Chl contents than those of the controls indicating their relative sensitivity to salt stress. Principal component analysis revealed that most of the variation was captured by PC1 (72% of the total variance) which grouped samples into three categories according to salt treatment. Correlation analyses highlighted significant associations between most parameters. Positive relationships were found between RDW, SDW, RWC, Chl content, and soluble proteins contents, while all of these parameters were negatively associated with EL intensity, proline content, and TSS content. The results from this study showed that the 'Massine' and 'Laanaceur' varieties were relatively salt-tolerant. These two salt-tolerant varieties present a good genetic background for breeding of barley varieties showing high salt tolerance.

Keywords

Acknowledgement

We would like to thank Dr. A. JILAL from the National Institute of Agricultural Research (INRA) in Morocco for providing us the seeds of barley investigated in this work. We also thank all members of the plant research station at the NRE Lab. for their helping with plant harvest and managing plants culture in the greenhouse.

References

  1. Abdelaal KA, Mazrou YS, Hafez YM (2020) Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants 9(6):733
  2. Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D, Wu F (2013) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem 63:49-60. https://doi.org/10.1016/j.plaphy.2012.11.004
  3. Allel D, Ben-Amar A, Abdelly C (2018) Leaf photosynthesis, chlorophyll fluorescence and ion content of barley (Hordeum vulgare) in response to salinity. J Plant Nutr 41(4):497-508. https://doi.org/10.1080/01904167.2017.1385811
  4. Alsamadany H, Mansour H, Elkelish A, Ibrahim MFM (2022) Folic Acid Confers Tolerance against Salt Stress-Induced Oxidative Damages in Snap Beans through Regulation Growth, Metabolites, Antioxidant Machinery and Gene Expression. Plants 11(11). https://doi.org/10.3390/plants11111459
  5. Anwar S, Shafi M, Bakht J, Jan MT, Hayat Y (2011) Response of barley genotypes to salinity stress as alleviated by seed priming. Pak J Bot 43(6):2687-2691
  6. Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress. J Plant Physiol 164. https://doi.org/10.1016/j.jplph.2006.05.010
  7. Arias-Baldrich C, Bosch N, Begines D, Feria AB, Monreal JA, Garcia-Maurino S (2015) Proline synthesis in barley under iron deficiency and salinity. J Plant Physiol 183, 121-129. https://doi.org/10.1016/j.jplph.2015.05.016
  8. Ashraf M, Shahzad SM, Imtiaz M, Rizwan MS (2018) Salinity effects on nitrogen metabolism in plants-focusing on the activities of nitrogen metabolizing enzymes: A review. J Plant Nutr 41(8):1065-1081. https://doi.org/10.1080/01904167.2018.1431670
  9. Bajji M, Kinet JM, Lutts S (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 36:61-70. DOI:10.1023/A:1014732714549
  10. Bates LS, Waldren RP, Tear ID (1973) short communication rapid determination of free proline for water-stress studies Plant Soil 207:205-207 https://doi.org/10.1007/BF00018060
  11. Binott JJ, Owuoche JO, Bartels D (2017) Physiological and molecular characterization of Kenyan barley (Hordeum vulgare L.) seedlings for salinity and drought tolerance. Euphytica 213(7). https://doi.org/10.1007/s10681-017-1924-2
  12. Boussakouran A, El Yamani M, Sakar EH, Rharrabti Y (2021) Genetic Advance and Grain Yield Stability of Moroccan Durum Wheats Grown under Rainfed and Irrigated Conditions. Int J Agron 2021. https://doi.org/10.1155/2021/5571501
  13. Burnison BK (1980) Modified Dimethyl Sulfoxide (DMSO) Extraction for Chlorophyll Analysis of Phytoplankton. Can J Fish Aquat Sci 37(4): 729-733. https://doi.org/10.1139/f80-095
  14. Chaaou A, Chikhaoui M, Naimi M, El Miad AK, Achemrk A, Seif-Ennasr M, El Harche S (2022) Mapping soil salinity risk using the approach of soil salinity index and land cover: a case study from Tadla plain, Morocco. Arab J Geosci 15(8). https://doi.org/10.1007/s12517-022-10009-5
  15. Chiahi N, Brinis L (2020) The influence of salt stress on the morpho physiological and biochemical parameters of durum wheat varieties (Triticum durum Desf.). J Biol Res- Boll Soc Ital Biol Sper 93(1). https://doi.org/10.4081/jbr.2020.7966
  16. Couee I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57(3):449-459. https://doi.org/10.1093/jxb/erj027
  17. da Silva JAS, Dos Santos MSN, Oro CED, de Moura DB, da Silva FB, da Silva PN, Knies AE, Zabot GL, Tres MV (2023) Interactive Performance of Wheat Nitrogen Fertilization and Inoculation with Growth-Promoting Bacteria. Biointerface Res Appl Chem 13(4):1-18. https://doi.org/10.33263/BRIAC134.304
  18. Dell'aversana E, Hessini K, Ferchichi S, Fusco GM, Woodrow P, Ciarmiello LF, Abdelly C, Carillo P (2021) Salinity duration differently modulates physiological parameters and metabolites profile in roots of two contrasting barley genotypes. Plants 10(2):1-20. https://doi.org/10.3390/plants10020307
  19. Duro JA, Lauk C, Kastner T, Erb KH, Haberl H (2020) Global inequalities in food consumption, cropland demand and land-use efficiency: A decomposition analysis. Glob Environ Change 64(July):102124. https://doi.org/10.1016/j.gloenvcha.102124
  20. El Goumi Y, Fakiri M, Lamsaouri O, Benchekroun M (2014) Salt stress effect on seed germination and some physiological traits in three Moroccan barley (Hordeum vulgare L.) cultivars. J Mater Environ Sci 5(2):625-632
  21. Elsaw y HIA, Mekaw y AMM, Elhity MA, Abdel-dayem SM, Abdelaziz MN, Assaha DVM, Ueda A, Saneoka H (2018) Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress. Plant Physiol Biochem 127(March):425-435. https://doi.org/10.1016/j.plaphy.2018.04.012
  22. Eshel A, Waisel Y (1972) Variations in Sodium Uptake Along Primary Roots of Corn Seedlings. Plant Physiol 49(4):585-589. https://doi.org/10.1104/pp.49.4.585
  23. Ferioun M, Srhiouar N, Bouhraoua S, El Ghachtouli N, Louahlia S (2023) Physiological and biochemical changes in Moroccan barley (Hordeum vulgare L.) cultivars submitted to drought stress. Heliyon 9(2):e13643. https://doi.org/10.1016/j.heliyon.2023.e13643
  24. Galston AW, Altabella T, Tiburcio AF (1997) Plant Polyamines in Reproductive Activity and Response to Abiotic Stress. Acta Bot 110(3), 197-207 https://doi.org/10.1111/j.1438-8677.1997.tb00629.x
  25. Gomes Silveira JA, De Almeida Viegas R, Almeida Da Rocha IM, De Oliveira Monteiro Moreira AC, De Azevedo Moreira RD, Abreu Oliveira JT (2003) Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. J Plant Physiol 160(2):115-123. https://doi.org/10.1078/0176-1617-00890
  26. Harsh A, Sharma YK, Joshi U, Rampuria S, Singh G, Kumar S, Sharma R (2016) Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia). Ann Agric Sci 61(1):57-64. https://doi.org/10.1016/j.aoas.2016.02.001
  27. Hasanuzzaman M, Shabala L, Zhou M, Brodribb TJ, Corkrey R, Shabala S (2018) Factors determining stomatal and non-stomatal (residual) transpiration and their contribution towards salinity tolerance in contrasting barley genotypes. Environ Exp Bot 153(May):10-20. https://doi.org/10.1016/j.envexpbot.2018.05.002
  28. Hellal FA, El-Shabrawi HM, Abd El-Hady M, Khatab IA, El-Sayed SAA, Abdelly C (2018) Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. J Genet Eng Biotechnol 16(1):203-212. https://doi.org/10.1016/j.jgeb.2017.10.009
  29. Hossain MA, Kumar V, Burritt DJ, Fujita M, Makela P (2019) Osmoprotectant-mediated abiotic stress tolerance in plants. Proline Metabolism and Its Functions in Development and Stress Tolerance; Springer Nature: Cham, Switzerland 41-72. https://doi.org/10.1007/978-3-030-27423-8
  30. Jamshidi A, Javanmard HR (2018) Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices. Ain Shams Eng J 9(4):2093-2099. https://doi.org/10.1016/j.asej.2017.02.006
  31. Karthikeyan A (2011) Transgenic indica rice cv. ADT 43 expressing a D 1 -pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. Plant Cell, Tissue Organ Cult 107:383-395. https://doi.org/10.1007/s11240-011-9989-4
  32. Khattabi D, Sakar EH, Louahlia S (2022) Flag leaf tolerance study in Moroccan barley (Hordeum vulgare L.) varieties submitted to a severe salt stress. Biointerface Res Appl Chem 12(3): 2787-2799. https://doi.org/10.33263/BRIAC123.27872799
  33. Kishor PBK, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37(2):300-311. https://doi.org/10.1111/pce.12157
  34. Lara V, Disante KB, Podest FE, Andreo CS (2003) Induction of a Crassulacean acid like metabolism in the C 4 succulent plant, Portulaca oleracea L.: physiological and morphological changes are accompanied by specific modifications in phosphoenolpyruvate carboxylase. Photosynth Res 77:241-254. https://doi.org/10.1023/A:1025834120499
  35. Lee MH, Cho EJ, Wi SG, Bae H, Kim JE, Cho JY, Lee S, Kim JH, Chung BY (2013) Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiol Biochem 70:325-335. https://doi.org/10.1016/j.plaphy.2013.05.047
  36. Liu B, Cai Z, Zhang Y, Liu G, Luo X, Zheng H (2019) Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land. Chemosphere 224:151-161. https://doi.org/10.1016/j.chemosphere.2019.02.100
  37. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  38. Mahlooji M, Seyed Sharifi R, Razmjoo J, Sabzalian MR, Sedghi M (2018) Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica 56(2):549-556. https://doi.org/10.1007/s11099-017-0699-y
  39. Mansour E, Desoky ESM, Ali MMA, Abdul-Hamid MI, Ullah H, Attia A, Datta A (2021) Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment. Agric Water Manag 247(December 2020):106754. https://doi.org/10.1016/j.agwat.2021.106754
  40. Mukami A, Ng A, Richard S (2020) Varietal differences in physiological and biochemical responses to salinity stress in six finger millet plants. Physiol Mol Biol Plants 26(8):1569-1582. https://doi.org/10.1007/s12298-020-00853-8
  41. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  42. Narimani T, Toorchi M, Tarinejad AR, Mohammadi SA, Mohammadi H (2020) Physiological and biochemical evaluation of barley (Hordeum vulgare l.) under salinity stress. J Agric Sci Technol 22(4):1009-1021
  43. Nefissi Ouertani R, Abid G, Ben Chikha M, Boudaya O, Mejri S, Karmous C, Ghorbel A (2022) Physiological and biochemical analysis of barley (Hordeum vulgare) genotypes with contrasting salt tolerance. Acta Physiol Plant 44(5). https://doi.org/10.1007/s11738-022-03388-5
  44. Nemati I, Moradi F, Gholizadeh S, Esmaeili MA, Bihamta MR (2011) The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.) seedlings. Plant Soil Environ 57(1):26-33. https://doi.org/10.17221/71/2010-pse
  45. Nguyen HT, Babu RC, Blum A (1997) Breeding for Drought Resistance in Rice: Physiology and Molecular Genetics Considerations. Crop Sci 37(5):1426-1434. https://doi.org/10.2135/cropsci1997.0011183X003700050002x
  46. Nguyen KH, Ha C Van, Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, Fujita Y, Tran UT, Li W, Tanaka M, Seki M, Schaller GE, Herrera-Estrella L, Tran LSP (2016) Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc Natl Acad Sci USA 113(11):3090-3095. https://doi.org/10.1073/pnas.1600399113
  47. Noreen S, Sultan M, Akhter MS, Shah KH, Ummara U, Manzoor H, Ulfat M, Alyemeni MN, Ahmad P (2021) Foliar fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare L.) grown under salt stress. Plant Physiol Biochem 158:244-254. https://doi.org/10.1016/j.plaphy.2020.11.007
  48. Oubaidou R, Hentour S, Houasli C, Aboutayeb R, El Goumi Y, El Maaiden E, Gaboun F, Lamsaouri O, Fakiri M (2021) Evaluating salt tolerance in doubled haploid barley lines using a multivariable screening approach. Biocatal Agric Biotechnol 35(June):102060. https://doi.org/10.1016/j.bcab.2021.102060
  49. Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot 60(14):4089-4103. https://doi.org/10.1093/jxb/erp243
  50. Pour-Aboughadareh A, Etminan A, Abdelrahman M, Siddique KHM, Tran LSP (2020) Assessment of biochemical and physiological parameters of durum wheat genotypes at the seedling stage during polyethylene glycol-induced water stress. Plant Growth Regul 92(1):81-93. https://doi.org/10.1007/s10725-020-00621-4
  51. Rafik A, Ibouh H, Fels AEA El, Eddahby L, Mezzane D, Bousfoul M, Amazirh A, Ouhamdouch S, Bahir M, Gourfi A, Dhiba D, Chehbouni A (2022) Soil Salinity Detection and Mapping in an Environment under Water Stress between 1984 and 2018 (Case of the Largest Oasis in Africa-Morocco). Remote Sensing 14(7). https://doi.org/10.3390/rs14071606
  52. Ranganayakulu GS, Veeranagamallaiah G, Sudhakar C (2013) Effect of salt stress on osmolyte accumulation in two groundnut cultivars (Arachis hypogaea L.) with contrasting salt tolerance. Afr J Plant Sci 7(12):586-592. https://doi.org/10.5897/AJPS11.063
  53. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57(5):1017-1023. https://doi.org/10.1093/jxb/erj108
  54. Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martinez EA, Molina-Montenegro MA, Biondi S, Zurita-Silva A (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49(11):1333-1341. https://doi.org/10.1016/j.plaphy.2011.08.005
  55. Salama Y, Mohammed C, El Amraoui M (2016) Etude de la Gestion Raisonnee de la Fertilisation et des Pourritures Racinaires Sur le Rendement d'une Collection Marocaine du Ble = Study of Rational Fertilization Management and Root Rot Disease on the Performance of a Moroccan Collection of Wheat. AJAE 6(2):32-42. https://doi.org/10.12816/0046019
  56. Sallam A, Alqudah AM, Dawood MFA, Baenziger PS, Borner A (2019) Drought stress tolerance in wheat and barley: Advances in physiology, breeding and genetics research. Int J Mol Sci 20(13). https://doi.org/10.3390/ijms20133137
  57. Senguttuvel P, Vijayalakshmi C, Thiyagarajan K, Sritharan N, Viraktamath BC (2014) changes in photosynthesis, chlorophyll fluorescence, gas exchange parameters and osmotic potential to salt stress during early seedling stage in rice (Oryza sativa L.). SABRAO J Breed Genet 46(1):120-135
  58. Shahbaz M, Ashraf M (2013) Improving Salinity Tolerance in Cereals. Crit Rev Plant Sci 32(4):237-249. https://doi.org/10.1080/07352689.2013.758544
  59. Silvente S, Sobolev AP, Lara M (2012) Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to w ater stress. PLoS ONE 7(6). https://doi.org/10.1371/journal.pone.0038554
  60. Tegeder M (2018) Tansley review Source and sink mechanisms of nitrogen transport and use New Phytol 35-53. https://doi.org/10.1111nph.14876 https://doi.org/10.1111nph.14876
  61. Tirry N, Ferioun M, Laghmari G, Kouchou A, Bahafid W, Omari B El, Ghachtouli N El (2023) Effect of Co-Immobilized Tri-Bacteria into Alginate Beads on Growth and Root Mycorrhizal Colonization Potential of Medicago Sativa Plants. Biointerface Res Appl Chem 13(5):1-10. https://doi.org/10.33263/BRIAC135.451
  62. Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genom 6(2):143-156. https://doi.org/10.1007/s10142-005-0013-0
  63. Wheat C, Chen L, Ren J, Shi H, Chen X (2014) Physiological and Molecular Responses to Salt Stress in Wild Emmer and Physiological and Molecular Responses to Salt Stress in Wild Emmer and Cultivated Wheat. Plant Mol Biol Rep 31:1212-1219. https://doi.org/10.1007/s11105-013-0584-1
  64. Yemm ADA, Willis EWJ (1954) A good year. The Estimation of Carbohydrates in Plant Extracts by Anthrone. Biochem J 57.3(1954):508. https://doi.org/10.1111/j.2042-7174.1999.tb00969.x
  65. Zahra N, Al Hinai MS, Hafeez MB, Rehman A, Wahid A, Siddique KHM, Farooq M (2022) Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiol Biochem 178(February):55-69. https://doi.org/10.1016/j.plaphy.2022.03.003
  66. Zeeshan M, Lu M, Sehar S, Holford P, Wu F (2020) Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy 10(1):1-15. https://doi.org/10.3390/agronomy10010127
  67. Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P (2021) Regulation of plant responses to salt stress. Int J Mol Sci 22(9):1-16. https://doi.org/10.3390/ijms2209460.