DOI QR코드

DOI QR Code

Somatic embryogenesis induction in four cassava landraces in East Java, Indonesia

  • 투고 : 2022.12.28
  • 심사 : 2023.03.13
  • 발행 : 2023.03.27

초록

Manihot esculenta Crantz, commonly known as cassava, is a staple aliment that is a significant source of revenue for farmers. The embryogenic callus is crucial in the genetic engineering of various crop species, including cassava. Four cultivar cassava landraces from East Java were assessed for their ability to produce friable embryogenic callus (FEC) for protoplast isolation. In this study, four cassava cultivars; (Kaspro, Kuning, Gajah, and Gendruwo); were used to obtain FEC, which involved the culture of immature leaf lobes (ILLs) and apical buds (ABs) media containing MS supplemented with 33 μM picloram and 2 μM of CuSO4 (M1) or MS supplemented with 50 μM 2,4-D and 2 μM CuSO4 (M2). The highest FEC induction efficiency ranged from 72% to 57%, and the highest FEC number ranged from 4.7 to 3.7 with AB explants in media containing MS + 33 μM pilocram and 2 μM CuSO4 (M1). On the other hand, the efficiency of somatic embryogenesis induction ranged from 67% to 53%, and the number ranged from 4.4 to 3.4. The efficiencies of FEC induction ranged from 48% to 42%, and the number ranged from 3.1 to 2.6 with AB explants in media containing MS + 50 μM 2,4-D and 2 μM CuSO4 (M2); the efficiency of FEC induction ranged from 56% to 50%, and the value ranged from 3.6 to 2.4 with ILL explants. The FEC induction of the Gendruwo cultivar, which was examined using AB and ILL explants, demonstrated the lowest efficiency. Nevertheless, all four cultivars showed the ability to generate FEC, even though their effectiveness differed depending on the explant genotype and the applied media.

키워드

과제정보

We as the authors would like to express our sincere gratitude to the IsDB Project of the University of Jember for their generosity in funding the study.

참고문헌

  1. Ceballos H, Iglesias CA, Pereze JC, Dixon AGO (2004) Cassava breeding: Opportunities and challenges. Plant Mol Biol 56:503-516 https://doi.org/10.1007/s11103-004-5010-5
  2. Ceballos H, Sanchez T, Morante N, Fregene M, Dufour D, Smith AM, Denyer K, Perez JC, Calle F, Mestres C (2007) Discovery of an amylose-free starch mutant in cassava (Manihot esculenta Crantz). J Agric Food Chem 55:7469-7476 https://doi.org/10.1021/jf070633y
  3. Chavez L, Sanchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolanos E, Ceballos H, Iglesias C (2005) Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica 143:125-133 https://doi.org/10.1007/s10681-005-3057-2
  4. Danso KE, Wilfred E, Vivian O, Prince K (2010) Comparative study of 2,4-D and Picloram on friable embryogenic calli and somatic embryos development in cassava (Manihot esculenta Crantz). International Journal of Integrative Biology 10:94-100
  5. Feitosa T, Bastos JLP, Ponte LFA, Juca TL, Campos FDADP (2007) Somatic embryogenesis in cassava genotypes from the northeast of Brazil. Brazilian Archives of Biology and Technology 50:201-206 https://doi.org/10.1590/S1516-89132007000200004
  6. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147-153 https://doi.org/10.1038/nature02085
  7. Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regulation 43:27-47 https://doi.org/10.1023/B:GROW.0000038275.29262.fb
  8. Gonzalez AE, Schopke C, Taylor NJ, Beachy RN, Fauquet CM (1998) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) through Agrobacterium mediated transformation of embryogenic suspension cultures. Plant Cell Rep. 17:827-831 https://doi.org/10.1007/s002990050492
  9. Howeler R, Lutaladio N, Thomas G (2013) Save and Grow: Cassava, a Guide to Sustainable Production Intensification. Food and Agriculture Organization of the United Nations, Rome
  10. Konieczny R, Bohdanowicz J, Czaplicki AZ, Przywara L (2005) Extracellular surface matrix network during plant regeneration in wheat anther culture. Plant Cell Tissue Org Cult 83:201-208 https://doi.org/10.1007/s11240-005-5771-9
  11. Li HQ, Huang YW, Liang CY, Guo JY, Liu HX, Potrykus I, Puonti-Kaerlas J (1998) Regeneration of cassava plants via shoot organogenesis. Plant Cell Rep 17:410-414 https://doi.org/10.1007/s002990050416
  12. Li HQ, Sautter C, Potrykus I, Puonti-Kaerlas J (1996) Genetic transformation of cassava (Manihot esculenta Crantz). Nat Biotechnol 14:136-140
  13. Lincy AK, Remashree AB Sasikumar B (2009) Indirect and direct somatic embryogenesis from aerial stem explants of ginger (Zingiber officinale Rosc). Acta Bot Croat 1:93-103
  14. Meilasari D, Iriawati I (2016) Regeneration of Plantlets Through PLB (Protocorm-Like Body) Formation in Phalaenopsis 'Join Angle X Sogo Musadian. Journal of Mathematical and Fundamental Sciences 48:204-212 https://doi.org/10.5614/j.math.fund.sci.2016.48.3.2
  15. Morante N, Sanchez T, Ceballos H, Calle F, Perez JC, Egesi C, Cuambe CE, Escobar AF, Ortiz D, Chavez AL, Fregene M (2010) Tolerance to postharvest physiological deterioration in cassava roots. Crop Sci 50:1333
  16. Murashige T, Skoog F (1962) A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Plant Physiology 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  17. Namasivayam P, Skepper J, Hanke D (2006) Identification of a potential structural marker for embryogenic competency in the Brassica napus spp. oleifera embryogenic tissue. Plant Cell Reports 25:887-95 https://doi.org/10.1007/s00299-006-0122-9
  18. Nassar N, Ortiz R (2010) Breeding cassava to feed the poor. Scientific American 302(5):78-85 https://doi.org/10.1038/scientificamerican0510-78
  19. Ng SYC, Adeniyi OJ (1994) Somatic embryogenesis in African adapted cassava and evaluation of regenerates. In: Roca WM & Thro AM (eds) Abstract and Program of the Second International Scientific Meeting of the Cassava Biotechnology Network 22-26.
  20. Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586-5591 https://doi.org/10.1073/pnas.96.10.5586
  21. Ovecka M, Bobak M (1999) Structural diversity of Papaver somniferum L. cell surfaces in vitro depending on particular steps of plant regeneration and morphogenic program. Acta Physiol Plant 21:117-126
  22. Pilarska M, Czaplicki AZ, Konieczny R (2007) Patterns of pectin epitope expression during shoot and root regeneration in androgenic cultures of two wheat cultivars. Acta Biologica Cracoviensia. Series Botanica 49(2).
  23. Popielarska-Konieczna M, Slesak H, Goralski G (2006) Histological and SEM studies on organogenesis in endosperm derived callus of kiwifruit (Actinidia deliciosa cv. Hayward). Acta Biologica Cracoviensia. Series Botanica 48(2):97-104
  24. Pravin JP, Dudharem MS, Saluja T, Sarawgi AK, Saxena R, Girish C (2011) Assessment of critical factors influencing callus induction, in vitro regeneration and selection of bombarded indica rice genotypes. J Agric Biotechnol Sustain Dev 3:44-59
  25. Priadi D, Fitriani H, Sudarmonowati E (2008) Pertumbuhan In vitro Tunas Ubi Kayu (Manihot esculenta Crantz) pada Berbagai Bahan Pemadat Alternatif Pengganti Agar. Biodiversitas 9:9-12
  26. Puonti-Kaerlas J, Frey P, Potrykus I (1998) Competence for embryogenesis and organogenesis in cassava. In: Pires de Matos A, Vilarinhos (eds). Proc. IV Int Scientific Meeting of the Cassava Biotechnology Network, Brasil
  27. Raemakers KJJM, Schavemaker CM, Jacobsen E, Visser RGF (1993) Improvement of cyclic somatic embryogenesis of cassava (Manihot esculenta Crantz). Plant Cell Peports 12:226-229
  28. Rossin CB, Rey MEC (2011) Effect of explant source and auxins on somatic embryogenesis of selected cassava (Manihot esculenta Crantz) cultivars. S Afr J Bot 77:59-65 https://doi.org/10.1016/j.sajb.2010.05.007
  29. Rudi N, Norton GW, Alwang J, Asumugha G (2010) Economic impact analysis of marker-assisted breeding for resistance to pests and post-harvest deterioration in cassava. Afr J Agric Resour Econ 4:110-122
  30. Saelim L, Phansiri S, Netrphan S, Suksangpanomrung M, Narangajavana J (2006) Optimization of in vitro cyclic somatic embryogenesis and regeneration of the Asian cultivars of cassava (Manihot esculenta crantz) for genetic manipulation system. Global Journal of Biotechnology and Biochemistry 1:7-15
  31. Samaj J, Bobak M, Blehova A, Kristin J, Auxtova-Samajova O (1995) Developmental SEM observations on an extracellular matrix in embryogenic calli of Drosera rotundifolia and Zea mays. Protoplasma 186:45-49 https://doi.org/10.1007/BF01276934
  32. Sawidis T, Quader H, Bopp M, Schnepf E (1991) Presence and absence of the preprophase band of microtubules in moss protonemata: A clue to understanding its function. Protoplasma volume 163:156-161 https://doi.org/10.1007/BF01323339
  33. Sondahl MR, Spahlenger DA, Sharp WR (1979) A histology study of high frequency and low frequency induction of somatic embryos in cultured leaf explants of Coffea arabicaL. Z Pflanzenphys 94:107-108
  34. Stamp JA, Henshaw GG (1982) Somatic embryogenesis in cassava. Zeitschrift fur Pflanzenphysiologie 105:183-187 https://doi.org/10.1016/S0044-328X(82)80011-1
  35. Taylor NJ, Masona MV, Carcamo R, Schopke C, Fauquet C (2001) Production of embryogenic tissue and regeneration of transgenic plants in cassava (Manihot esculenta Crantz). Euphytica 120: 25-34 https://doi.org/10.1023/A:1017526814789
  36. Tomaz ML, Mendes BMJ, Francisco de Assis Filho AM, Demetrio CG, Jansakul N, Rodriguez APM (2001) Somatic embryogenesis in Citrus spp.: Carbohydrate stimulation and histodifferentiation. In vitro cellular & developmental biology. Plant 37(4):446-452
  37. Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferriere N, Nicole M (2001) Ultrastructural changes in coconut calli associated with the acquisition of Embryogenic Competence. Annals of Botany 88:9-18 https://doi.org/10.1006/anbo.2001.1408
  38. Wen F, Su WP, Zheng H, Yu BC, Ma ZF, Zhang P, Guo WW (2020) Plant regeneration via protoplast electrofusion in cassava. Journal of Integrative Agriculture 19:632-642 https://doi.org/10.1016/S2095-3119(19)62711-5
  39. Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proceedings of the National Academy of Sciences of the USA 98:10487-10492 https://doi.org/10.1073/pnas.171304098
  40. Werner T, Schmulling T (2009). Cytokinin action in plant development. Current Opinion in Plant Biology 12:527-538 https://doi.org/10.1016/j.pbi.2009.07.002
  41. Zhang P, Phansiri S, Puonti-Kaerlas J (2001) Improvement of cassava organogenesis by the use of silver nitrate in vitro. Plant Cell, Tissue and Organ Culture 67:47-54 https://doi.org/10.1023/A:1011654128198
  42. Zhang P, Qiuxiang M, Maliwan N, Xiaoyun W, Zhou W, Jun Y (2017) Advances in genetic modification of cassava, In book: Achieving sustainable cultivation of cassava Volume 2: Genetic resources, breeding, pests and diseases. Editon 1, Burleigh Dodds Science Publishing Limited
  43. Zhang S, Chen X, Lu C, Ye J, Zou M, Lu K, Feng S, Pei J, Liu C, Zhou X, Ma P, Li Z, Liu C, Liao Q, Xia Z, Wang W (2018) Genome-wide association studies of 11 agronomic traits in cassava (Manihot esculenta Crantz). Frontiers in Plant Science 9:503
  44. Zhao GI, Yang XD, Guo DQ, Hu ZM (2008) Histological Study on Soybean Somatic Embryogenesis. Agricultural Science & Technology 9:49-53