DOI QR코드

DOI QR Code

Comparative proteome profiling in the storage root of sweet potato during curing-mediated wound healing

큐어링 후 저장에 따른 고구마 저장뿌리 단백질체의 비교분석

  • Ho Yong Shin (Department of Plant Medicine, College of Agriculture and Life Sciences, IALS, Gyeongsang National University) ;
  • Chang Yoon Ji (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ho Soo Kim (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jung-Sung Chung (Department of Agronomy, College of Agriculture and Life Sciences, Gyeongsang National University, IALS) ;
  • Sung Hwan Choi (Division of Horticulture Science, College of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Sang-Soo Kwak (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yun-Hee Kim (Department of Biology Education, College of Education, IALS, Gyeongsang National University) ;
  • Jeung Joo Lee (Department of Plant Medicine, College of Agriculture and Life Sciences, IALS, Gyeongsang National University)
  • 신호용 (경상국립대학교 농업생명과학대학 식물의학과(농업생명과학연구원)) ;
  • 지창윤 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 김호수 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 정정성 (경상국립대학교 농업생명과학대학 농학과(농업생명과학연구원)) ;
  • 최성환 (경상국립대학교 농업생명과학대학 원예과학부(농업생명과학연구원)) ;
  • 곽상수 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 김윤희 (경상국립대학교 사범대학 생물교육과(농업생명과학연구원)) ;
  • 이증주 (경상국립대학교 농업생명과학대학 식물의학과(농업생명과학연구원))
  • Received : 2023.02.07
  • Accepted : 2023.02.25
  • Published : 2023.03.16

Abstract

Sweet potato (Ipomoea batatas L. Lam) is an economically important root crop and a valuable source of nutrients, processed foods, animal feeds, and pigment materials. However, during post-harvest storage, storage roots of sweet potatoes are susceptible to decay caused by various microorganisms and diseases. Post-harvest curing is the most effective means of healing wounds and preventing spoilage by microorganisms during storage. In this study, we aimed to identify proteins involved in the molecular mechanisms related to curing and study proteomic changes during the post-curing storage period. For this purpose, changes in protein spots were analyzed through 2D-electrophoresis after treatment at 33℃ (curing) and 15℃ (control) for three days, followed by a storage period of eight weeks. As a result, we observed 31 differentially expressed protein spots between curing and control groups, among which 15 were identified. Among the identified proteins, the expression level of 'alpha-amylase (spot 1)' increased only after the curing treatment, whereas the expression levels of 'probable aldo-keto reductase 2-like (spot 3)' and 'hypothetical protein CHGG_01724 (spot 4)' increased in both the curing and control groups. However, the expression level of 'sporamin A (spot 10)' decreased in both the curing and control treatments. In the control treatment, the expression level of 'enolase (spot 14)' increased, but the expression levels of 'chain A of actinidin-E-64 complex+ (spot 19)', 'ascorbate peroxidase (spot 22)', and several 'sporamin proteins (spot 20, 21, 23, 24, 27, 29, 30, and 31)' decreased. These results are expected to help identify proteins related to the curing process in sweet potato storage roots, understand the mechanisms related to disease resistance during post-harvest storage, and derive candidate genes to develop new varieties with improved low-temperature storage capabilities in the future.

고구마(Ipomoea batatas L. Lam)는 영양소, 가공 식품, 동물 사료 및 색소 재료의 유용한 공급원으로 이용 가능한 경제적으로 중요한 대표적인 뿌리 작물이다. 일반적으로 고구마의 저장 뿌리는 수확 후 저장 기간 동안 다양한 미생물과 질병에 의한 부패에 노출되기 쉽다. 수확 후 큐어링은 저장기간 동안 상처를 치유하고 미생물에 의한 부패를 방지하기 위한 가장 적합한 수단으로 알려져 있다. 본 연구에서는 큐어링과 연관된 분자적 기작에 관여하는 단백질들을 확인하기 위해, 큐어링 처리 후 저장기간 동안 단백질체의 변화를 분석하였다. 33℃ (큐어링) 및 15℃ (대조군)에서 3일 동안 처리하고 8주의 저장 기간이 지난 후 2D 전기영동 분석을 통해 단백질 spot의 변화를 확인한 결과, 31개 단백질 spot의 발현량이 차이 나는 것을 확인하였으며, 이들 중 15개의 단백질 spot을 동정하여 그 특성을 분석하였다. 동정된 단백질 중 alphaamylase (spot 1)는 큐어링 처리구에서만 발현량이 증가하였으며, probable aldo-keto reductase 2-like (spot 3) 및 hypothetical protein CHGG_01724 (spot 4)는 큐어링 및 대조구에서 동시에 발현량이 증가하였으나, sporamin A (spot 10)는 큐어링 및 대조구에서 발현량이 감소하였다. 한편, 대조구에서 enolase (spot 14)는 발현량이 증가하였으나, chain A of actinidin-E-64 complex+ (spot 19), ascorbate peroxidase (spot 22) 및 여러 sporamin 단백질들(spot 20, 21, 23, 24, 27, 29, 30 및 31)은 발현량이 감소하였다. 본 연구의 결과는 고구마 저장 뿌리에서 큐어링 처리와 관련된 단백질의 동정 및 수확 후 저장 기간동안 병 저항성과 관련된 기작에 대한 이해를 높이며, 향후 저온 저장 능력이 향상된 신품종 개발을 위한 후보 유전자의 도출에도 기여할 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 한국연구재단 중견연구자지원사업(2021R1A2C400188711) 및 경상국립대학교 첨단소재분석지원센터의 지원으로 수행되었다.

References

  1. Aidoo KE (1993) Post-harvest storage and preservation of tropical crops. Int Biodeter Biodegr 32:161-173 https://doi.org/10.1016/0964-8305(93)90048-7
  2. Aleman A, Sastre J, Quirce S, de las Heras M, Carnes J, Fernandez-Caldas E, Pastor C, Blazquez AB, Vivanco F, Cuesta-Herranz J (2004) Allergy to kiwi: A double-blind, placebo-controlled food challenge study in patients from a birch-free area. J Allergy Clin Immunol 113:543-550 https://doi.org/10.1016/j.jaci.2003.11.043
  3. Andrade JDM, Toledo TT, Nogueira SB, Cordenunsi BR, Lajolo FM, do Nascimento JR (2012) 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening. J Proteom 75:3331-3341 https://doi.org/10.1016/j.jprot.2012.03.047
  4. Andriotis VM, Kruger NJ, Pike MJ, Smith AM (2010) Plastidial glycolysis in developing Arabidopsis embryos. New Phytol 185:649-662 https://doi.org/10.1111/j.1469-8137.2009.03113.x
  5. Asada K (1992) Ascorbate peroxidase: A hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235-241 https://doi.org/10.1111/j.1399-3054.1992.tb04728.x
  6. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  7. Asatsuma S, Sawada C, Itoh K, Okito M, Kitajima A, Mitsui T (2005) Involvement of alpha-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol 46:858-69 https://doi.org/10.1093/pcp/pci091
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  9. Bublin M, Marim A, Ebner C, Knulst A, Scheiner O, Hoffmann-Sommergruber K, Breiteneder H, Radauer C (2004) IgE sensitization profiles toward green and gold kiwifruits differ among patients allergic to kiwifruit from 3 European countries. J Allergy Clin Immunol 114:1169-1175 https://doi.org/10.1016/j.jaci.2004.07.016
  10. Cai D, Thurau T, Tian Y, Lange T, Yeh KW, Jung C (2003) Sporamin-mediated resistance to beet cyst nematodes (Heterodera schachtii Schm.) is dependent on trypsin inhibitory activity in sugar beet (Beta vulgaris L.) hairy roots. Plant Mol Biol 51:839-849 https://doi.org/10.1023/A:1023089017906
  11. Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504-5516 https://doi.org/10.1002/pmic.200600143
  12. Clark CA, Ferrin DM, Smith TP, Holmes GJ (2013) Compendium of sweetpotato diseases, pest, and disorders, Second Edition. Am Phytopath Soc 1-160
  13. FAO (Food and Agriculture Organization) (2020) FAOSTAT, Available online at: http://www.fao.org/faostat/en/#home (accessed May 20, 2021)
  14. Gale MD, Chojecki AJ, Kempton RA (1983) Genetic control of α -Amylase production in wheat. Teo App Gen 64:309-316 https://doi.org/10.1007/BF00274170
  15. Givan CV (1999) Evolving concepts in plant glycolysis: Two centuries of progress. Biol Rev 74:277-309 https://doi.org/10.1111/j.1469-185X.1999.tb00188.x
  16. Gul S, Mellor GW, Thomas EW, Brocklehurst K (2006) Temperature-dependences of the kinetics of reactions of papain and actinidin with a series of reactivity probes differing in key molecular recognition features. The Biochemical Journal 396:17-21 https://doi.org/10.1042/BJ20051501
  17. Ha J, Won JC, Jung YH, Yang JW, Lee HU, Nam KJ, Park SC, Jeong JC, Lee SW, Lee DW, Chung JS, Lee JJ, Kim YH (2017) Comparative proteomic analysis of the response of fibrous roots of nematode-resistant and -sensitive sweet potato cultivars to root-knot nematode Meloidogyne incognita. Acta Physiol Plant 39:262
  18. Hakata M, Kuroda M, Miyashita T, Yamaguchi T, Kojima M, Sakakibara H, Mitsui T, Yamakawa H (2012) Suppression of alpha-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnol J 10:1110-1117 https://doi.org/10.1111/j.1467-7652.2012.00741.x
  19. Hattori T, Nakagawa S, Nakamura K (1990) High-level expression of tuberous root storage protein genes of sweet potato in stems of plantlets grown in in vitro on sucrose medium. Plant Mol Biol 14:595-604 https://doi.org/10.1007/BF00027505
  20. Hattori T, Yoshida N, Nakamura K (1989) Structural relationship among the members of multigene family coding for the sweet potato tuberous roots storage proteins. Plant Mol Biol 13:563-572 https://doi.org/10.1007/BF00027316
  21. Hayes BH, Ward JK, Lowe JW, Davis JD, Shankle MW, Arancibia RA (2014) Development of a mechanical undercutting system to minimize sweetpotato skinning during harvest. Appl Engin Agri 30:355-360
  22. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473-503 https://doi.org/10.1146/annurev.arplant.50.1.473
  23. Hou J, Zhang H, Liu J, Reid S, Liu T, Xu S, Tian Z, Sonnewald U, Song B, Xie C (2017) Amylases StAmy23, StBAM1 and StBAM9 regulate cold-induced sweetening of potato tubers in distinct ways. J Exp Bot 68:2317-2331 https://doi.org/10.1093/jxb/erx076
  24. Huo J, Bing DU, Sun S, Shaozhen HE, Zhao N, Liu Q, Zhai H (2018) A novel aldo-keto reductase gene, IbAKR, from sweet potato confers higher tolerance to cadmium stress in tobacco. Front Agric Sci Eng 5:206-213
  25. Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802-806 https://doi.org/10.1104/pp.81.3.802
  26. Jacobsen JV, Higgins TJV (1982) Characterization of the α-amylases synthesized by aleurone layers of himalaya barley in response to gibberellic acid. Plant Physiol 70:1647-1653 https://doi.org/10.1104/pp.70.6.1647
  27. Ji CY, Kim YH, Lee CJ, Park SU, Lee HU, Kwak SS, Kim HS (2022) Comparative transcriptome profiling of sweetpotato storage roots during curing-mediated wound healing. Gene 833:146592
  28. Ju L, Pan Z, Zhang H, Li Q, Liang J, Deng G, Yu M, Long H (2019) New insights into the origin and evolution of α-amylase genes in green plants. Sci Rep 9:4929
  29. Kamphuis IG, Drenth J, Baker EN (1985) Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain. Journal of Molecular Biology. 182:317-29 https://doi.org/10.1016/0022-2836(85)90348-1
  30. Kanayama Y, Mizutani R, Yaguchi S, Hojo A, Ikeda H, Nishiyama M, Kanahama K (2014) Characterization of an uncharacterized aldo-keto reductase gene from peach and its role in abiotic stress tolerance. Phytochemistry 104:30-36 https://doi.org/10.1016/j.phytochem.2014.04.008
  31. Kim ST, Kim SG, Hwang DH, Kang SY, Kim HJ, Lee BH, Lee JJ, Kang KY (2004) Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569-3578 https://doi.org/10.1002/pmic.200400999
  32. Kim YH, Ji CY, Kim HS, Chung JS, Choi SH, Kwak SS, Lee JJ (2022) Proteome analysis of storage roots of two sweet potato cultivars with contrasting low temperature tolerance during storage. J Plant Biotechnol 49:118-123 https://doi.org/10.5010/JPB.2022.49.2.118
  33. Kitajima A, Asatsuma S, Okada H, Hamada Y, Kaneko K, Nanjo Y, Kawagoe Y, Toyooka K, Matsuoka K, Takeuchi M, Nakano A, Mitsui T (2009) The rice alpha-amylase glycoprotein is targeted from the Golgi apparatus through the secretory pathway to the plastids. Plant Cell 21:2844-2858 https://doi.org/10.1105/tpc.109.068288
  34. Kottayil IV, Ying S, Dean C, Sadiq H, Nguyen-huu X (1992) Crystal Structure of an Actinidin-E-64 Complex. Biochemistry 31:5172-5176 https://doi.org/10.1021/bi00137a012
  35. Lal SK, Lee C, Sachs MM (1998) Differential regulation of enolase during anaerobiosis in Maize. Plant Physiol 118:1285-1293 https://doi.org/10.1104/pp.118.4.1285
  36. Lee JJ, Kim YH, Kwak YS, An JY, Kim PJ, Lee BH, Kumar V, Park K, Chang ES, Jeong JC, Lee HS, Kwak SS (2015) A comparative study of proteomic differences between pencil and storage roots of sweetpotato (Ipomoea batatas (L.) Lam.) Plant Physiol Biochem 87:92-101 https://doi.org/10.1016/j.plaphy.2014.12.010
  37. Lee JJ, Park KW, Kwak YS, Ahn JY, Jung YH, Lee BH, Jeng JC, Lee HS, Kwak SS (2012) Comparative proteomic study between tuberous roots of light orange- and purple-fleshed sweetpotato cultivars. Plant Sci 19:120-129 https://doi.org/10.1016/j.plantsci.2012.06.003
  38. Lucas JSA, Lewis SA, Hourihane JO (2003) Kiwi fruit allergy: A review. Pediatr Allergy Immunol 14:420-428 https://doi.org/10.1046/j.0905-6157.2003.00095.x
  39. Manaa A, Faurobert M, Valot V, Bouchet JP, Grasselly D, Causse M, Ahmed HB (2013) Effect of salinity and calcium on tomato fruit proteome. Omics 17:338-352 https://doi.org/10.1089/omi.2012.0108
  40. Matsui NM, Smith-Beckerman DM, Epstein LB (1999) Staining of preparative 2-D (2-D proteome analysis protocols). Meth Mol Biol 112:370-371
  41. Miyazaki T (1990) Effects of curing, storage conditions, and cooking on the composition of sweetpotatoes. J Jap Soc Hort Sci 59:649-656 https://doi.org/10.2503/jjshs.59.649
  42. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867-880
  43. Palacin A, Rodriguez J, Blanco C, Lopez-Torrejon G, Sanchez-Monge R, Varela J, Jimenez MA, Cumplido J, Carrillo T, Crespo JF, Salcedo G (2008) Immunoglobulin E recognition patterns to purified kiwifruit (Actinidia deliciosa) allergens in patients sensitized to kiwi with different clinical symptoms. Clin Exp Allergy 38:1220-1228 https://doi.org/10.1111/j.1365-2222.2007.02927.x
  44. Pastorello EA, Conti A, Pravettoni V, Farioli L, Rivolta F, Ansaloni R, Ispano M, Incorvaia C, Giuffrida MG, Ortolani C (1998) Identification of actinidin as the major allergen of kiwi fruit. J Allergy Clin Immunol 101:531-537 https://doi.org/10.1016/S0091-6749(98)70360-4
  45. Penning TM (2015) The aldo-keto reductases (AKRs): Overview. Chem Biol Interact 234:236-246 https://doi.org/10.1016/j.cbi.2014.09.024
  46. Prabhakar V, Lottgert T, Gigolashvili T, Bell K, Flugge UI, Hausler RE (2009) Molecular and functional characterization of the plastid-localized Phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett 583:983-991 https://doi.org/10.1016/j.febslet.2009.02.017
  47. Ratnasiri M, Niels JN, Sean MB, Janine MC, Sol AG, Ross GA (2013) Diversity and relative levels of actinidin, kiwellin, and thaumatin-like allergens in 15 varieties of kiwifruit (Actinidia) J Agric Food Chem 58:5068-5073
  48. Ray RC, Ravi V (2005) Post-harvest spoilage of sweetpotato in tropics and control measures. Crit Rev Food Sci Nut 45:623-644 https://doi.org/10.1080/10408390500455516
  49. Saxena I, Srikanth S, Chen Z (2016) Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci 7:570
  50. Sengupta D, Naik D, Reddy AR (2015) Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update. J Plant Physiol 179:40-55 https://doi.org/10.1016/j.jplph.2015.03.004
  51. Senthilkumar R, Yeh KW (2012) Multiple biological functions of sporamin related to stress tolerance in sweet potato (Ipomoea batatas Lam). Biotechnol Adv 30:1309-1317 https://doi.org/10.1016/j.biotechadv.2012.01.022
  52. Seung D, Thalmann M, Sparla F, Hachem MA, Lee SK, Issakidis-Bourguet E, Svensson B, Zeeman SC, Santelia D (2013) Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic alpha-amylase. J Biol Chem 288:33620-33633 https://doi.org/10.1074/jbc.M113.514794
  53. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305-1319 https://doi.org/10.1093/jexbot/53.372.1305
  54. Sowley E, Oduro K (2002) Effectiveness of curing in controlling fungal-induced storage rot in sweetpotato in Ghana. Trop Sci 42:6-10
  55. Streb S, Eicke S, Zeeman SC (2012) The simultaneous abolition of tree starch hydrolases blocks transient starch breakdown in Arabidopsis. J Biol Chem 287:41745-41756 https://doi.org/10.1074/jbc.M112.395244
  56. Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecota KV, Yencho GC (2007) Antioxidant activities, phenolic and β-carotene contents of sweetpotato genotypes with varying flesh colors. Food Chem 103:829-838 https://doi.org/10.1016/j.foodchem.2006.09.033
  57. Tomlins KI, Ndunguru GT, Rwiza E, Westby A (2000) Postharvest handling, transport and quality of sweetpotato in Tanzania. J Hort Sci Biotechnol 75:586-590 https://doi.org/10.1080/14620316.2000.11511290
  58. Tomlins KI, Ndunguru GT, Rwiza E, Westby J (2002) Influence of pre-harvest curing and mechanical injury on the quality and shelf-life of sweetpotato (Ipomoea batatas (L.) Lam) in East Africa. J Hort Sci Biotechnol 77:399-403 https://doi.org/10.1080/14620316.2002.11511512
  59. Van Oirschot QEA, Rees D, Aked J, Kihurani A (2006) Sweetpotato cultivars differ in efficiency of wound healing. Posthar Biol Technol 42:65-74 https://doi.org/10.1016/j.postharvbio.2006.05.013
  60. Villavicencio LE, Blankenship SM, Yencho GC, Thomas JF, Raper CD (2007) Temperature effect on skin adhesion, cell wall enzyme activity, lignin content, anthocyanins, growth parameters, and periderm histochemistry of sweetpotato. J Am Soc Hort Sci 132:729-738 https://doi.org/10.21273/JASHS.132.5.729
  61. Wang X, Arancibia RA, Main JL, Shankle MW, LaBonte DR (2013) Preharvest foliar applications of ethephon increase skin lignin/suberin content and resistance to skinning in sweetpotato storage roots. HortScience 48:1270-1274 https://doi.org/10.21273/HORTSCI.48.10.1270
  62. Yeh KW, Chen JC, Lin MI, Chen YM, Lin CY (1997) Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Plant Mol Biol 33:565-570 https://doi.org/10.1023/A:1005764702510
  63. Yoshinaga M, Yamakawa O, Nakatani M (1999) Genotypic diversity of anthocyanin content and composition in purplefleshed sweetpotato (Ipomoea batatas (L.) Lam). Breeding Sci 49:43-47 https://doi.org/10.1270/jsbbs.49.43
  64. Yu GD, Lee HU, Nam SS, Hwang UJ, Yang JW, Paul NC, Lee KB, Ko S, Kang YG (2018) Difference of storability according to the curing treatment in Korean sweetpotato varieties. J Kor Soc Int Agri 30:44-50 https://doi.org/10.12719/KSIA.2018.30.1.44
  65. Zeng Y, Pan Z, Ding Y, Zhu A, Cao H, Xu Q, Deng X (2011) A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck]. J Exp Bot 62:5297-5309 https://doi.org/10.1093/jxb/err140
  66. Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet HA, Sicher R (2009) An evaluation of cassava, sweetpotato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenerg 33:1503-1508 https://doi.org/10.1016/j.biombioe.2009.07.014