DOI QR코드

DOI QR Code

HYPERBOLIC STRUCTURE OF POINTWISE INVERSE PSEUDO-ORBIT TRACING PROPERTY FOR C1 DIFFEOMORPHISMS

  • Manseob Lee (Department of Marketing Bog Data and Mathematics Mokwon University)
  • 투고 : 2022.01.14
  • 심사 : 2022.04.22
  • 발행 : 2023.01.31

초록

We deal with a type of inverse pseudo-orbit tracing property with respect to the class of continuous methods, as suggested and studied by Pilyugin [54]. In this paper, we consider a continuous method induced through the diffeomorphism of a compact smooth manifold, and using the concept, we proved the following: (i) If a diffeomorphism f of a compact smooth manifold M has the robustly pointwise inverse pseudoorbit tracing property, f is structurally stable. (ii) For a C1 generic diffeomorphism f of a compact smooth manifold M, if f has the pointwise inverse pseudo-orbit tracing property, f is structurally stable. (iii) If a diffeomorphism f has the robustly pointwise inverse pseudo-orbit tracing property around a transitive set Λ, then Λ is hyperbolic for f. Finally, (iv) for C1 generically, if a diffeomorphism f has the pointwise inverse pseudo-orbit tracing property around a locally maximal transitive set Λ, then Λ is hyperbolic for f. In addition, we investigate cases of volume preserving diffeomorphisms.

키워드

과제정보

The author would like to thank the reviewers for their useful comments and suggestions.

참고문헌

  1. F. Abdenur, C. Bonatti, and S. Crovisier, Nonuniform hyperbolicity for C1-generic diffeomorphisms, Israel J. Math. 183 (2011), 1-60. https://doi.org/10.1007/s11856-011-0041-5
  2. F. Abdenur and L. J. Diaz, Pseudo-orbit shadowing in the C1 topology, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 223-245. https://doi.org/10.3934/dcds.2007.17.223
  3. J. Ahn, K. Lee, and M. Lee, Homoclinic classes with shadowing, J. Inequal. Appl. 2012 (2012), 97, 6 pp. https://doi.org/10.1186/1029-242X-2012-97
  4. N. Aoki, The set of Axiom A diffeomorphisms with no cycles, Bol. Soc. Brasil. Mat. (N.S.) 23 (1992), no. 1-2, 21-65. https://doi.org/10.1007/BF02584810
  5. A. Arbieto, B. Carvalho, W. Cordeiro, and D. J. Obata, On bi-Lyapunov stable homoclinic classes, Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 1, 105-127. https://doi.org/10.1007/s00574-013-0005-y
  6. A. Arbieto and T. Catalan, Hyperbolicity in the volume-preserving scenario, Ergodic Theory Dynam. Systems 33 (2013), no. 6, 1644-1666. https://doi.org/10.1017/etds.2012.111
  7. A. Arbieto, L. Senos, and T. Sodero, The specification property for flows from the robust and generic viewpoint, J. Differential Equations 253 (2012), no. 6, 1893-1909. https://doi.org/10.1016/j.jde.2012.05.022
  8. M. Bessa, C1-stably shadowable conservative diffeomorphisms are Anosov, Bull. Korean Math. Soc. 50 (2013), no. 5, 1495-1499. https://doi.org/10.4134/BKMS.2013.50.5.1495
  9. M. Bessa, M. Lee, and S. Vaz, Stable weakly shadowable volume-preserving systems are volume-hyperbolic, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 6, 1007-1020. https://doi.org/10.1007/s10114-014-3093-8
  10. M. Bessa, M. Lee, and X. Wen, Shadowing, expansiveness and specification for C1-conservative systems, Acta Math. Sci. Ser. B (Engl. Ed.) 35 (2015), no. 3, 583-600. https://doi.org/10.1016/S0252-9602(15)30005-9
  11. C. Bonatti and S. Crovisier, Recurrence et genericite, Invent. Math. 158 (2004), no. 1,33-104. https://doi.org/10.1007/s00222-004-0368-1
  12. C. Bonatti, L. J. Diaz, and E. R. Pujals, A C1-generic dichotomy for diffeomorphisms:weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2) 158(2003), no. 2, 355-418. https://doi.org/10.4007/annals.2003.158.355
  13. B. Carvalho, Hyperbolicity, transitivity and the two-sided limit shadowing property, Proc. Amer. Math. Soc. 143 (2015), no. 2, 657-666. https://doi.org/10.1090/S0002-9939-2014-12250-7
  14. R. M. Corless and S. Y. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), no. 2, 409-423. https://doi.org/10.1006/jmaa.1995.1027
  15. S. Gan, K. Sakai, and L. Wen, C1-stably weakly shadowing homoclinic classes admit dominated splittings, Discrete Contin. Dyn. Syst. 27 (2010), no. 1, 205-216. https://doi.org/10.3934/dcds.2010.27.205
  16. S. Hayashi, Diffeomorphisms in F1(M) satisfy Axiom A, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 233-253. https://doi.org/10.1017/S0143385700006726
  17. I. Kupka, Contribution a la theorie des champs generiques, Contributions to Differential Equations 2 (1963), 457-484.
  18. M. Lee and G. Lu, Limit weak shadowable transitive sets of C1-generic diffeomorphisms, Commun. Korean Math. Soc. 27 (2012), no. 3, 613-619. https://doi.org/10.4134/CKMS.2012.27.3.613
  19. K. Lee, Continuous inverse shadowing and hyperbolicity, Bull. Austral. Math. Soc. 67(2003), no. 1, 15-26. https://doi.org/10.1017/S0004972700033487
  20. M. Lee, C1-stable inverse shadowing chain components for generic diffeomorphisms, Commun. Korean Math. Soc. 24 (2009), no. 1, 127-144. https://doi.org/10.4134/CKMS.2009.24.1.127
  21. M. Lee, Stably average shadowable homoclinic classes, Nonlinear Anal. 74 (2011), no. 2,689-694. https://doi.org/10.1016/j.na.2010.09.027
  22. M. Lee, Average shadowing property for volume preserving diffeomorphisms, Far East J. Math. Sci. (FJMS) 64 (2012), no. 2, 261-267.
  23. M. Lee, Stably asymptotic average shadowing property and dominated splitting, Adv. Difference Equ. 2012 (2012), 25, 6 pp. https://doi.org/10.1186/1687-1847-2012-25
  24. M. Lee, Robustly chain transitive sets with orbital shadowing diffeomorphisms, Dyn. Syst. 27 (2012), no. 4, 507-514. https://doi.org/10.1080/14689367.2012.725032
  25. M. Lee, Usual limit shadowable homoclinic classes of generic diffeomorphisms, Adv. Difference Equ. 2012 (2012), 91, 8 pp. https://doi.org/10.1186/1687-1847-2012-91
  26. M. Lee, Volume-preserving diffeomorphisms with inverse shadowing, J. Inequal. Appl. 2012 (2012), 275, 9 pp. https://doi.org/10.1186/1029-242X-2012-275
  27. M. Lee, Orbital shadowing for C1-generic volume-preserving diffeomorphisms, Abstr. Appl. Anal. 2013 (2013), Art. ID 693032, 4 pp. https://doi.org/10.1155/2013/693032
  28. M. Lee, Volume preserving diffeomorphisms with weak and limit weak shadowing, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 3, 319-325.
  29. M. Lee, Diffeomorphisms with robustly ergodic shadowing, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 6, 747-753.
  30. M. Lee, Chain components with C1-stably orbital shadowing, Adv. Difference Equ. 2013(2013), 67, 12 pp. https://doi.org/10.1186/1687-1847-2013-67
  31. M. Lee, The ergodic shadowing property and homoclinic classes, J. Inequal. Appl. 2014(2014), 90, 10 pp. https://doi.org/10.1186/1029-242X-2014-90
  32. M. Lee, The ergodic shadowing property from the robust and generic view point, Adv. Difference Equ. 2014 (2014), 170, 7 pp. https://doi.org/10.1186/1687-1847-2014-170
  33. M. Lee, Volume-preserving diffeomorphisms with various limit shadowing, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 25 (2015), no. 2, 1550018, 8 pp. https://doi.org/10.1142/S0218127415500182
  34. M. Lee, The ergodic shadowing property for robust and generic volume-preserving diffeomorphisms, Balkan J. Geom. Appl. 20 (2015), no. 2, 49-56.
  35. M. Lee, The local star condition for generic transitive diffeomorphisms, Commun. Korean Math. Soc. 31 (2016), no. 2, 389-394. https://doi.org/10.4134/CKMS.2016.31.2.389
  36. M. Lee, The barycenter property for robust and generic diffeomorphisms, Acta Math.Sin. (Engl. Ser.) 32 (2016), no. 8, 975-981. https://doi.org/10.1007/s10114-016-5123-1
  37. M. Lee, A type of the shadowing properties generic view points, Axiom 7(2018), 1-7. https://doi.org/10.3390/axioms7010001
  38. M. Lee, Decomposition property for C1 generic diffeomorphisms, J. Chungcheong Math. Soc. 32 (2019), no. 2, 165-170. https://doi.org/10.14403/jcms.2019.32.2.165
  39. M. Lee, Asymptotic orbital shadowing property for diffeomorphisms, Open Math. 17 (2019), no. 1, 191-201. https://doi.org/10.1515/math-2019-0002
  40. M. Lee, Orbital shadowing property on chain transitive sets for generic diffeomorphisms,Acta Univ. Sapientiae Math. 12 (2020), no. 1, 146-154. https://doi.org/10.2478/ausm-2020-0009
  41. M. Lee, Eventual shadowing for chain transitive sets of C1 generic dynamical systems, J. Korean Math. Soc. 58 (2021), no. 5, 1059-1079. https://doi.org/10.4134/JKMS.j190083
  42. M. Lee, Inverse pseudo orbit tracing property for robust diffeomorphisms, Chaos Solitons Fractals 160 (2022), Paper No. 112150. https://doi.org/10.1016/j.chaos.2022.112150
  43. K. Lee and M. Lee, Stably inverse shadowable transitive sets and dominated splitting, Proc. Amer. Math. Soc. 140 (2012), no. 1, 217-226. https://doi.org/10.1090/S0002-9939-2011-10882-7
  44. K. Lee and M. Lee, Volume preserving diffeomorphisms with orbital shadowing, J. Inequal. Appl. 2013, (2013), 18, 5 pp. https://doi.org/10.1186/1029-242X-2013-18
  45. M. Lee and S. Lee, Generic diffeomorphisms with robustly transitive sets, Commun. Korean Math. Soc. 28 (2013), no. 3, 581-587. https://doi.org/10.4134/CKMS.2013.28.3.581
  46. K. Lee and M. Lee, Shadowable chain recurrence classes for generic diffeomorphisms, Taiwanese J. Math. 20 (2016), no. 2, 399-409. https://doi.org/10.11650/tjm.20.2016.5815
  47. K. Lee, M. Lee, and S. Lee, Transitive sets with C1 stably limit shadowing, J. Chungcheong Math. Soc. 26(2013), 45-52. https://doi.org/10.14403/JCMS.2013.26.1.045
  48. K. Lee, K. Moriyasu, and K. Sakai, C1-stable shadowing diffeomorphisms, Discrete Contin. Dyn. Syst. 22 (2008), no. 3, 683-697. https://doi.org/10.3934/dcds.2008.22.683
  49. M. Lee and J. Park, Diffeomorphisms with average and asymptotic average shadowing, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 23 (2016), no. 4, 285-294.
  50. M. Lee and J. Park, Expansive transitive sets for robust and generic diffeomorphisms, Dyn. Syst. 33 (2018), no. 2, 228-238. https://doi.org/10.1080/14689367.2017.1335287
  51. M. Lee and X. Wen, Diffeomorphisms with C1-stably average shadowing, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 1, 85-92. https://doi.org/10.1007/s10114-012-1162-4
  52. G. Lu, K. Lee, and M. Lee, Generic diffeomorphisms with weak limit shadowing, Adv. Difference Equ. 2013 (2013), 27, 5 pp. https://doi.org/10.1186/1687-1847-2013-27
  53. S. Yu. Pilyugin, Inverse shadowing by continuous methods, Discrete Contin. Dyn. Syst. 8 (2002), no. 1, 29-38. https://doi.org/10.3934/dcds.2002.8.29
  54. S. Yu. Pilyugin, Transversality and local inverse shadowing, Regul. Chaotic Dyn. 11 (2006), no. 2, 311-318. https://doi.org/10.1070/RD2006v011n02ABEH000354
  55. S. Yu. Pilyugin, A. A. Rodionova, and K. Sakai, Orbital and weak shadowing properties, Discrete Contin. Dyn. Syst. 9 (2003), no. 2, 287-308. https://doi.org/10.3934/dcds.2003.9.287
  56. R. Potrie, Generic bi-Lyapunov stable homoclinic classes, Nonlinearity 23 (2010), no. 7, 1631-1649. https://doi.org/10.1088/0951-7715/23/7/006
  57. C. Robinson, Structural stability of C1 diffeomorphisms, J. Differential Equations 22 (1976), no. 1, 28-73. https://doi.org/10.1016/0022-0396(76)90004-8
  58. C. Robinson, Stability theorems and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 7 (1977), no. 3, 425-437. https://doi.org/10.1216/RMJ-1977-7-3-425
  59. K. Sakai, Pseudo-orbit tracing property and strong transversality of diffeomorphisms on closed manifolds, Osaka J. Math. 31 (1994), no. 2, 373-386. http://projecteuclid.org/euclid.ojm/1200785292
  60. K. Sakai, Diffeomorphisms with the average-shadowing property on two-dimensional closed manifolds, Rocky Mountain J. Math. 30 (2000), no. 3, 1129-1137. https://doi.org/10.1216/rmjm/1021477263
  61. K. Sakai, Diffeomorphisms with weak shadowing, Fund. Math. 168 (2001), no. 1, 57-75. https://doi.org/10.4064/fm168-1-2
  62. K. Sakai, C1-stably shadowable chain components, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 987-1029. https://doi.org/10.1017/S0143385707000570
  63. K. Sakai, N. Sumi, and K. Yamamoto, Diffeomorphisms satisfying the specification property, Proc. Amer. Math. Soc. 138 (2010), no. 1, 315-321. https://doi.org/10.1090/S0002-9939-09-10085-0
  64. X. Tian and W. Sun, Diffeomorphisms with various C1 stable properties, Acta Math. Sci. Ser. B (Engl. Ed.) 32 (2012), no. 2, 552-558. https://doi.org/10.1016/S0252-9602(12)60037-X
  65. X. Wang, Hyperbolicity versus weak periodic orbits inside homoclinic classes, Ergodic Theory Dynam. Systems 38 (2018), no. 6, 2345-2400. https://doi.org/10.1017/etds.2016.122
  66. X. Wen, S. Gan, and L. Wen, C1-stably shadowable chain components are hyperbolic, J. Differential Equations 246 (2009), no. 1, 340-357. https://doi.org/10.1016/j.jde.2008.03.032
  67. D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), no. 4, 729-733. https://doi.org/10.1088/0951-7715/22/4/002