Commun. Korean Math. Soc. **38** (2023), No. 1, pp. 113–120 https://doi.org/10.4134/CKMS.c220067 pISSN: 1225-1763 / eISSN: 2234-3024

SOME RESULTS INVOLVING THE REPRESENTATION OF THE CENTRALIZER OF A MATRIX

Smail Bouarga

ABSTRACT. In this paper, we investigate the dimension and the structure of the centralizer of a square matrix with entries from an arbitrary field.

1. Introduction

Throughout this paper, K denotes an arbitrary field, $\mathcal{M}_n(K)$ all n by n matrices with entries from K. For a given n by n matrix A over K, its centralizer $\mathcal{C}(A)$ is the subalgebra of $\mathcal{M}_n(K)$ consisting of all matrices B that commute with A. For a given n by n matrix A over K and m by m matrix over K, the Sylvester space $\mathcal{C}(A, B)$ of A and B is the set of all n by m T-matrices over K such that AT = TB (see [3]). There are several reasons to devote a study to the centralizer $\mathcal{C}(A)$. Indeed the centralizer $\mathcal{C}(A)$ is the set of solutions of the homogenous equation of

$$AX - XA = C$$

where $X \in \mathcal{M}_n(K)$. On another side, the representation of the centralizer of a given square matrix, $\mathcal{C}(A)$ of A is related to the problem of representation of the Sylvester space $\mathcal{C}(A, B)$ which is neither else the set of solutions of the homogenous matrix equation

$$AX - XB = C$$

where $X \in \mathcal{M}_{n \times m}(K)$, that plays a central role in many areas of applied mathematics and, in particular in systems and control theory. The structure of $\mathcal{C}(A)$ is only known for non-derogatory matrices (resp. cyclic endomorphism). In [8] author treats the problem of determining $\mathcal{C}(A)$ over the real and the complex field. We aim to give some results in the characterization of $\mathcal{C}(A)$ over an arbitrary field by using results from module theory.

©2023 Korean Mathematical Society

Received March 12, 2022; Revised May 28, 2022; Accepted June 28, 2022.

 $^{2020\} Mathematics\ Subject\ Classification.\ 15 xx.$

Key words and phrases. Centralizer, invariant factors, primary matrix, Sylvester space.

2. Preliminaries

In this section, we introduce notations and mathematical objects used in this paper.

2.1. Notations

Throughout this paper, the following notations are used.

- K, an arbitrary field.
- $\mathcal{M}_n(K)$, the set of n by n matrices with entries from K.
- $\mathcal{C}(A)$, the centralize of A.
- C(A, B) of A and B is the set of all n by m T-matrices over K such that AT = TB.
- C_A or $C_A(X)$, the characteristic polynomial of A.
- m_A or $m_A(X)$, the minimal polynomial of A.
- $diag(A_1, A_2, \ldots, A_m)$, a block diagonal matrix with matrices A_1, A_2, \ldots, A_m on its main diagonal blocks.
- K[B] denotes the subspace of $\mathcal{M}_n(K)$ spanned by all powers of B.
- $\mathcal{M}_r(K[B])$ denote the set of all $r \times r$ matrices $A = (f_{ij})$ with entries $f_{ij} \in K[B]$.
- $Comp(m_A)$, the companion matrix of m_A .
- $\oplus_{i=1}^r \oplus_{j=1}^r \mathcal{C}(A_i, A_j)$, the direct sum of the $\mathcal{C}(A_i, A_j)$.
- $\prod_{i=1}^{s} \mathcal{C}(A_i)$, the product of the $\mathcal{C}(A_i)$.
- $\deg f$, the degree of f.
- $\dim_K \mathcal{C}(A)$, dimension of $\mathcal{C}(A)$.

2.2. Notions from module theory

We include some well-known results which are used for developing the proof of our main result. Let $A \in \mathcal{M}_n(K)$ be a non zero matrix, and M_A be the K[X]-module induced by A. From theory of finitely generated torsion module over P.I.D (see [5, p. 215], [6, §2, p. 556], and [1, p. 235]), we have the following theorems.

Theorem 2.1. Let $A \in \mathcal{M}_n(K)$ be a non zero matrix, and M_A be the K[X]-module induced by A. Then there exists a unique sequence of polynomials q_1, \ldots, q_r such that:

$$M_A \simeq \frac{K[X]}{(q_1)} \oplus \frac{K[X]}{(q_2)} \oplus \dots \oplus \frac{K[X]}{(q_r)}$$

and

- q_i divides q_{i+1} for all $1 \le i \le r-1$,
- $q_r = m_A$ the minimal polynomial of A and $\prod_{i=1}^r q_i = C_A$ the characteristic polynomial of A.

The ascending sequence of polynomials q_1, \ldots, q_r are unique up similarity and called the invariant factors of A.

A matrix A with entries from a field K is said to be in rational canonical form if there exists an ordered set $\{f_1, f_2, \ldots, f_r\}$ of polynomials in K[X] such that f_i divides f_{i+1} for all $i \in \{1, \ldots, r-1\}$ and

$$A = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & A_r \end{pmatrix},$$

where A_i is the companion matrix of f_i , and each 0 is zero matrix of appropriate order.

Theorem 2.2 (Rational canonical form). Every square matrix with entries in a field K is similar to a unique matrix in rational canonical form.

A partition $\lambda = (\lambda_1, \ldots, \lambda_r)$ of a positive integer *n* is a finite nonincreasing sequence of positive integers $\lambda_1, \lambda_2, \ldots, \lambda_r$ such that $\sum_{i=1}^r \lambda_i = n$. The λ_i are called the parts of the partition λ .

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ be a partition of the number n and let λ'_i be the number of parts of the partition λ that are $\geq i$, or equivalently the largest j such that $\lambda_j \geq i$. Then $\lambda^* = (\lambda'_1, \lambda'_2, \dots, \lambda'_s)$ is a partition of the number n called the conjugate partition of the partition λ .

The partition $\lambda = (\lambda_1, \ldots, \lambda_r)$ of *n* can be graphically visualized with Young's diagram: the *i*th row of the graphical representation of $(\lambda_1, \ldots, \lambda_r)$ contains λ_i unit square (see [2, pp. 1–7]).

3. Main results

In this part, we aim to give some characterizations of $\mathcal{C}(A)$.

Theorem 3.1. Let $A \in \mathcal{M}_n(K)$ be a non zero matrix and r the number of its invariant factors. If $B = Comp(m_A)$, then

 $\mathcal{C}(A)$ is isomorph to $\mathcal{M}_r(K[B])$ as K algebras if and only if $C_A = (m_A)^r$.

The proof of Theorem 3.1 involves the two following lemmas.

Lemma 3.2 ([1, Theorem 5.15, p. 336]). Let $A \in \mathcal{M}_n(K)$ be a non zero matrix. Then

$$\dim_K \mathcal{C}(A) = \sum_{i=1}^{r} (2r - 2i + 1)d_i \qquad (Frobenius formula),$$

where q_i are the invariant factors of A and $d_i = \deg q_i$.

Lemma 3.3. Let $A \in \mathcal{M}_n(K)$. If A is a block diagonal matrix, i.e., $A = diag(A_1, A_2, \ldots, A_m)$, where A_i are $n_i \times n_i$ square matrices such that $n_1 + \cdots + n_r = n$. Then the centralizer of the matrix A is

$$\mathcal{C}(A) \simeq \bigoplus_{i=1}^r \bigoplus_{j=1}^r \mathcal{C}(A_i, A_j).$$

Proof. Let $T \in \mathcal{M}_n(K)$. Write $T = (T_{ij})$ as an $r \times r$ block matrix with the same block structure as A. If $T \in \mathcal{C}(A)$, then $A_i T_{ij} = T_{ij} A_j$ hence $T_{ij} \in \mathcal{C}(A_i, A_j)$. Conversely if $T = (T_{ij})$ with $T_{ij} \in \mathcal{C}(A_i, A_j)$, then $AT = (A_i T_{ij})$ and $TA = (A_j T_{ij})$, since $T_{ij} \in \mathcal{C}(A_i, A_j)$. Then $T \in \mathcal{C}(A)$.

Proof of Theorem 3.1. Let $A \in \mathcal{M}_n(K)$ and q_1, \ldots, q_r be the invariant factors of A. Assume that $\mathcal{C}(A)$ is isomorphic to $\mathcal{M}_r(K[B])$. Then

(3)
$$\dim_K \mathcal{C}(A) = r^2 \deg(m_A)$$

By virtue of Lemma 3.2 we have

(4)
$$\dim_K C(A) = \sum_{i=1}^r (2r - 2i + 1)d_i,$$

where $d_i = \deg q_i$ for all $1 \le i \le r$, it follows from (3) that

(5)
$$\sum_{i=1}^{r} (2r - 2i + 1)d_i = r^2 d_r.$$

According to (5) and by remarking that $r^2 = \sum_{i=1}^{r} (2r - 2i + 1)$, we have

(6)
$$\sum_{i=1}^{r} (2r - 2i + 1)(d_r - d_i) = 0$$

The equality (6) gives $d_r = d_i$ for all $1 \le i \le r$ since [2(r-i)+1] > 0and $d_r \ge d_i$ for each $1 \le i \le r$. Consequently $q_i = q_r$ for each $1 \le i \le r$. Therefore $C_A = (m_A)^r$. Conversely, suppose that $C_A = (m_A)^r$. According to the following decomposition $C_A = \prod_{i=1}^r q_i$, where q_1, \ldots, q_r are the invariant factors of A such that $q_i \mid q_{i+1}$ for all $1 \le i \le r-1$, so we have $q_1 = \cdots =$ $q_{r-1} = q_r$. By applying Theorem 2.1 we get, the following rational canonical form of A,

$$A = diag(B, B, \dots, B) \\ = \begin{pmatrix} B & 0 & \cdots & 0 \\ 0 & B & \cdots & 0 \\ \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & B \end{pmatrix},$$

where B is the companion matrix of $m_A = q_1 = \cdots = q_r$. Then we can invoke Lemma 3.3 to conclude that the centralizer $\mathcal{C}(A)$ of the matrix A is isomorphic to $\mathcal{M}_r(K[B])$.

3.1. Case of a primary matrix

Let $A \in \mathcal{M}_n(K)$ and $B \in \mathcal{M}_m(K)$. Recall that the matrices A and B are said to be coprime if there exist two coprime polynomials P and Q in K[X] such that P(A) = 0 and Q(B) = 0. If the matrices A and B are coprime, then $\mathcal{C}(A, B) = 0$ (see [3]).

Let $A \in \mathcal{M}_n(K)$ and P be an irreducible monic polynomial of K[X]. We will say that A is a P-primary matrix if the characteristic polynomial of A is a power of P.

Lemma 3.4. Let $A \in \mathcal{M}_n(K)$ be a non zero matrix. Then A is similar to a block diagonal P_i -primary matrices diag (A_1, A_2, \ldots, A_s) .

Proof. Let $m_A = \prod_{i=1}^{s} P_i^{\alpha_i}$ be the prime decomposition of m_A . By the primary decomposition theorem (see Theorem 1.5.1, p. 29 in [7]), A is similar to a block diagonal P_i -primary matrices $diag(A_1, A_2, \ldots, A_s)$.

Lemma 3.5. Let $A \in \mathcal{M}_n(K)$ be a non zero matrix. Then the centralizer $\mathcal{C}(A)$ of the matrix A is isomorph to the ring $\prod_{i=1}^{s} \mathcal{C}(A_i)$, where A_1, A_2, \ldots, A_s are pairwise coprime matrices.

Proof. By Lemma 3.4, A is similar to a block diagonal P_i -primary matrices $diag(A_1, A_2, \ldots, A_s)$ furthermore the A_i 's are pairwise coprime matrices. Hence, by Lemma 3.3, the centralizer of the matrix A is isomorph to $\prod_{i=1}^{s} C(A_i)$. \square

Remark that by Lemma 3.5 the study of the centralizer $\mathcal{C}(A)$ reduces to the study of the centralizer of a *P*-primary matrix.

Lemma 3.6. If $A \in \mathcal{M}_n(K)$ is a *P*-primary matrix such that $m_A = P^{\alpha}$ and $C_A = P^{\beta}$ with $\alpha \leq \beta$, then there exists a partition $\lambda = (\lambda_1, \ldots, \lambda_r)$ of β such that $\lambda_1 = \alpha$ and $q_i = P^{\lambda_{r-i+1}}$ for any $1 \leq i \leq r$ are the invariant factors of A.

Proof. Since $m_A = P^{\alpha}$ and $C_A = P^{\beta}$, the invariant factors of A are of the form P^{α_i} , $1 \leq i \leq r$ with $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_r = \alpha$ and $\sum_{i=1}^r \alpha_i = \beta$. Set $\lambda_i = \alpha_{r-i+1}$ and $q_i = P^{\lambda_{r-i+1}}$ for each $1 \leq i \leq r$, we can verify easily that

- $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_r = \alpha$ and $\sum_{i=1}^r \lambda_i = \beta$. $q_i \mid q_{i+1}$ for $1 \le i \le r-1$, $q_r = m_A$ and $\prod_{i=1}^r q_i = C_A$.

Theorem 3.7. Let $A \in \mathcal{M}_n(K)$ be a *P*-primary matrix. If *r* is the number of invariant factors of A and B is the companion matrix of m_A , then the following assertions are equivalent:

(1)
$$m_A = P$$
.

- (2) $\dim_K \mathcal{C}(A) = r^2 \deg(P).$
- (3) $\mathcal{C}(A) \simeq \mathcal{M}_r(K[B]).$

Proof. Let $m_A = P^{\alpha}$ and $C_A = P^{\beta}$.

(1) \Rightarrow (2) If $\alpha = 1$, then $q_1 = \cdots = q_r = P$ are the invariant factors of A and $r = \beta$. Then by Lemma 3.2

$$\dim_K \mathcal{C}(A) = \sum_{i=1}^r (2r - 2i + 1) \deg(q_i)$$
$$= \left[(2r + 1)r - 2\sum_{i=1}^r i \right] \deg(P)$$

$$= \left[(2r+1)r - \frac{2r(r+1)}{2} \right] \deg P$$
$$= r^2 \deg P.$$

 $(2) \Rightarrow (1)$ If dim_K $\mathcal{C}(A) = r^2 \deg(P)$, let $\lambda = (\lambda_1, \dots, \lambda_r)$ be the partition of β such that $\lambda_1 = \alpha$ and $q_i = P^{\lambda_{r-i+1}}, 1 \le i \le r$ are the invariant factors of A, by such that $\lambda_1 = \alpha$ and $q_i = 1$, $1 \leq i \leq r$ are the invariant factors of H_i , it's enough to prove that $\lambda_1 = \cdots = \lambda_r = 1$. Indeed by hypothesis and by virtue of Lemma 3.2 we have $\dim_K \mathcal{C}(A) = \sum_{i=1}^r (2r - 2i + 1)\lambda_{r-i+1} \deg P = r^2 \deg P$. Then by remarking that $\sum_{i=1}^r (2r - 2i + 1) = r^2$ we get $\sum_{i=1}^r [(2r - 2i + 1)(\lambda_{r-i+1} - 1)] = 0$. Therefore $(\lambda_{r-i+1} - 1) = 0$ for all $1 \leq i \leq r$ because [2(r-i) + 1] > 0 for each $1 \leq i \leq r$. Thus $\lambda_1 = \cdots = \lambda_r = 1$.

For the equilibrium $(1) \Leftrightarrow (3)$, it suffice to apply Theorem 3.1.

Theorem 3.8. Let $A \in \mathcal{M}_n(K)$ be a *P*-primary matrix such that $C_A = P^{\beta}$. Let $\lambda = (\lambda_1, \dots, \lambda_r)$ be the partition of β such that q_1, \dots, q_r are the invariant factors of A where, $q_i = P^{\lambda_{r-i+1}}$ for any $1 \le i \le r$. Then

$$\dim_{K} \mathcal{C}(A) = \left[\sum_{k=1}^{s} {\lambda'}_{k}^{2}\right] \deg(P),$$

where $\lambda^* = (\lambda'_1, \ldots, \lambda'_s)$ is the conjugate partition of the partition $\lambda = (\lambda_1, \ldots, \lambda_r)$.

To prove the theorem we need the following lemma:

Lemma 3.9 ([7, Proposition 3.3.1, p. 106]). Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ be a partition of the number n and $\lambda^* = (\lambda'_1, \lambda'_2, \dots, \lambda'_s)$ be its conjugate partition. Then

$$\sum_{i=1}^{k} (2i-1)\lambda_i = \sum_{i=1}^{s} {\lambda'}_i^2.$$

Proof. By Lemma 3.2 and Lemma 3.9, we have

$$\dim_K \mathcal{C}(A) = \sum_{i=1}^r (2r - 2i + 1) \deg(q_i)$$

= $\sum_{i=1}^r (2(r - i + 1) - 1) \deg(q_i)$
= $\sum_{j=1}^r (2j - 1) \deg(q_{r-j+1})$
= $\sum_{j=1}^r (2j - 1) \deg(P^{\lambda_j})$
= $\left[\sum_{j=1}^r (2j - 1)\lambda_j\right] \deg(P)$

$$= \left[\sum_{i=1}^{s} {\lambda'_i^2}\right] \deg(P).$$

Thus the desired result.

Corollary 3.10. Let $A \in \mathcal{M}_n(K)$ be a non zero matrix. If $m_A = \prod_{i=1}^r P_i$ and $C_A = \prod_{i=1}^r P_i^{\beta_i}$, where P_i is an irreducible monic polynomial of K[X] for all $1 \leq i \leq r$. Then

$$\dim_K \mathcal{C}(A) = \sum_{i=1}^r \beta_i^2 \deg(P_i).$$

Proof. By Theorem 3.7 we have $\dim_K \mathcal{C}(A_i) = \beta_i^2 \deg(P)$ for all $1 \leq i \leq r$. Then we invoke Lemma 3.5, to obtain

$$\dim_K \mathcal{C}(A) = \dim_K \left(\prod_{i=1}^r \mathcal{C}(A_i) \right)$$
$$= \sum_{i=1}^r \dim_K \mathcal{C}(A_i)$$
$$= \sum_{i=1}^r \beta_i^2 \deg(P_i).$$

We deduce the well known result (see [4], or [7]).

Corollary 3.11. Let $A \in \mathcal{M}_n(K)$. If $m_A = \prod_{i=1}^r (X - \lambda_i)$ and $C_A(X) = \prod_{i=1}^r (X - \lambda_i)^{\beta_i}$, then $\dim_K \mathcal{C}(A) = \sum_{i=1}^r \beta_i^2$.

Acknowledgement. The author sincerely thanks the reviewer for his valuable comments.

References

- W. A. Adkins and S. H. Weintraub, Algebra, Graduate Texts in Mathematics, 136, Springer-Verlag, New York, 1992. https://doi.org/10.1007/978-1-4612-0923-2
- [2] G. E. Andrews, *The theory of partitions*, reprint of the 1976 original, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998.
- [3] M. Charkani and S. Bouarga, Polynomial solution of sylvester matrix equation, Inter. J. Alg. 9 (2015), 185–194.
- [4] X. Gourdon, Les maths en tête: Algèbre [maths in head: Algebra], Ellipses, Paris.
- [5] R. Lal, Algebra 2—linear algebra, Galois theory, representation theory, group extensions and Schur multiplier, Infosys Science Foundation Series, Springer, Singapore, 2017.
- [6] S. Lang, Algebra, revised third edition, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002. https://doi.org/10.1007/978-1-4613-0041-0
- [7] K. C. O'Meara, J. Clark, and C. I. Vinsonhaler, Advanced Topics in Linear Algebra, Oxford University Press, Oxford, 2011.
- [8] G. Weiss, The Theory of Matrices. vol. 1 and vol. 2. F. R. Gantmacher. Chelsea Publishing Company, New York 68, 1959. vol. 1: x+374 pp. vol. 2: x+277 pp. 6 each, Science 131 (1960), 1216–1216.

119

SMAIL BOUARGA DEPARTMENT OF APPLIED MATHEMATICS FACULTY OF APPLIED SCIENCES UNIVERSITY IBN ZOHR P.O.BOX 6146 CITE AZROU, 86153 AIT MELLOUL, AGADIR, MOROCCO Email address: s.bouarga@uiz.ac.ma