SOME RESULTS INVOLVING THE REPRESENTATION OF THE CENTRALIZER OF A MATRIX

Smail Bouarga

Abstract

In this paper, we investigate the dimension and the structure of the centralizer of a square matrix with entries from an arbitrary field.

1. Introduction

Throughout this paper, K denotes an arbitrary field, $\mathcal{M}_{n}(K)$ all n by n matrices with entries from K. For a given n by n matrix A over K, its centralizer $\mathcal{C}(A)$ is the subalgebra of $\mathcal{M}_{n}(K)$ consisting of all matrices B that commute with A. For a given n by n matrix A over K and m by matrix over K, the Sylvester space $\mathcal{C}(A, B)$ of A and B is the set of all n by $m T$-matrices over K such that $A T=T B$ (see [3]). There are several reasons to devote a study to the centralizer $\mathcal{C}(A)$. Indeed the centralizer $\mathcal{C}(A)$ is the set of solutions of the homogenous equation of

$$
\begin{equation*}
A X-X A=C \tag{1}
\end{equation*}
$$

where $X \in \mathcal{M}_{n}(K)$. On another side, the representation of the centralizer of a given square matrix, $\mathcal{C}(A)$ of A is related to the problem of representation of the Sylvester space $\mathcal{C}(A, B)$ which is neither else the set of solutions of the homogenous matrix equation

$$
\begin{equation*}
A X-X B=C \tag{2}
\end{equation*}
$$

where $X \in \mathcal{M}_{n \times m}(K)$, that plays a central role in many areas of applied mathematics and, in particular in systems and control theory. The structure of $\mathcal{C}(A)$ is only known for non-derogatory matrices (resp. cyclic endomorphism). In [8] author treats the problem of determining $\mathcal{C}(A)$ over the real and the complex field. We aim to give some results in the characterization of $\mathcal{C}(A)$ over an arbitrary field by using results from module theory.

[^0]
2. Preliminaries

In this section, we introduce notations and mathematical objects used in this paper.

2.1. Notations

Throughout this paper, the following notations are used.

- K, an arbitrary field.
- $\mathcal{M}_{n}(K)$, the set of n by n matrices with entries from K.
- $\mathcal{C}(A)$, the centralize of A.
- $\mathcal{C}(A, B)$ of A and B is the set of all n by $m T$-matrices over K such that $A T=T B$.
- C_{A} or $C_{A}(X)$, the characteristic polynomial of A.
- m_{A} or $m_{A}(X)$, the minimal polynomial of A.
- $\operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{m}\right)$, a block diagonal matrix with matrices A_{1}, A_{2}, \ldots, A_{m} on its main diagonal blocks.
- $K[B]$ denotes the subspace of $\mathcal{M}_{n}(K)$ spanned by all powers of B.
- $\mathcal{M}_{r}(K[B])$ denote the set of all $r \times r$ matrices $A=\left(f_{i j}\right)$ with entries $f_{i j} \in K[B]$.
- $\operatorname{Comp}\left(m_{A}\right)$, the companion matrix of m_{A}.
- $\oplus_{i=1}^{r} \oplus_{j=1}^{r} \mathcal{C}\left(A_{i}, A_{j}\right)$, the direct sum of the $\mathcal{C}\left(A_{i}, A_{j}\right)$.
- $\prod_{i=1}^{s} \mathcal{C}\left(A_{i}\right)$, the product of the $\mathcal{C}\left(A_{i}\right)$.
- $\operatorname{deg} f$, the degree of f.
- $\operatorname{dim}_{K} \mathcal{C}(A)$, dimension of $\mathcal{C}(A)$.

2.2. Notions from module theory

We include some well-known results which are used for developing the proof of our main result. Let $A \in \mathcal{M}_{n}(K)$ be a non zero matrix, and M_{A} be the $K[X]$-module induced by A. From theory of finitely generated torsion module over P.I.D (see [5, p. 215], [6, §2, p. 556], and [1, p. 235]), we have the following theorems.

Theorem 2.1. Let $A \in \mathcal{M}_{n}(K)$ be a non zero matrix, and M_{A} be the $K[X]$ module induced by A. Then there exists a unique sequence of polynomials q_{1}, \ldots, q_{r} such that:

$$
M_{A} \simeq \frac{K[X]}{\left(q_{1}\right)} \oplus \frac{K[X]}{\left(q_{2}\right)} \oplus \cdots \oplus \frac{K[X]}{\left(q_{r}\right)}
$$

and

- q_{i} divides q_{i+1} for all $1 \leq i \leq r-1$,
- $q_{r}=m_{A}$ the minimal polynomial of A and $\prod_{i=1}^{r} q_{i}=C_{A}$ the characteristic polynomial of A.
The ascending sequence of polynomials q_{1}, \ldots, q_{r} are unique up similarity and called the invariant factors of A.

A matrix A with entries from a field K is said to be in rational canonical form if there exists an ordered set $\left\{f_{1}, f_{2}, \ldots, f_{r}\right\}$ of polynomials in $K[X]$ such that f_{i} divides f_{i+1} for all $i \in\{1, \ldots, r-1\}$ and

$$
A=\left(\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \cdots & \cdots & \vdots \\
0 & 0 & \cdots & A_{r}
\end{array}\right)
$$

where A_{i} is the companion matrix of f_{i}, and each 0 is zero matrix of appropriate order.

Theorem 2.2 (Rational canonical form). Every square matrix with entries in a field K is similar to a unique matrix in rational canonical form.

A partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ of a positive integer n is a finite nonincreasing sequence of positive integers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ such that $\sum_{i=1}^{r} \lambda_{i}=n$. The λ_{i} are called the parts of the partition λ.

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ be a partition of the number n and let λ_{i}^{\prime} be the number of parts of the partition λ that are $\geq i$, or equivalently the largest j such that $\lambda_{j} \geq i$. Then $\lambda^{*}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{s}^{\prime}\right)$ is a partition of the number n called the conjugate partition of the partition λ.

The partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ of n can be graphically visualized with Young's diagram: the $i^{t h}$ row of the graphical representation of $\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ contains λ_{i} unit square (see [2, pp. 1-7]).

3. Main results

In this part, we aim to give some characterizations of $\mathcal{C}(A)$.
Theorem 3.1. Let $A \in \mathcal{M}_{n}(K)$ be a non zero matrix and r the number of its invariant factors. If $B=\operatorname{Comp}\left(m_{A}\right)$, then
$\mathcal{C}(A)$ is isomorph to $\mathcal{M}_{r}(K[B])$ as K algebras if and only if $C_{A}=\left(m_{A}\right)^{r}$.
The proof of Theorem 3.1 involves the two following lemmas.
Lemma 3.2 ([1, Theorem 5.15, p. 336]). Let $A \in \mathcal{M}_{n}(K)$ be a non zero matrix. Then

$$
\operatorname{dim}_{K} \mathcal{C}(A)=\sum_{i=1}^{r}(2 r-2 i+1) d_{i} \quad \text { (Frobenius formula) },
$$

where q_{i} are the invariant factors of A and $d_{i}=\operatorname{deg} q_{i}$.
Lemma 3.3. Let $A \in \mathcal{M}_{n}(K)$. If A is a block diagonal matrix, i.e., $A=$ $\operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{m}\right)$, where A_{i} are $n_{i} \times n_{i}$ square matrices such that $n_{1}+$ $\cdots+n_{r}=n$. Then the centralizer of the matrix A is

$$
\mathcal{C}(A) \simeq \oplus_{i=1}^{r} \oplus_{j=1}^{r} \mathcal{C}\left(A_{i}, A_{j}\right)
$$

Proof. Let $T \in \mathcal{M}_{n}(K)$. Write $T=\left(T_{i j}\right)$ as an $r \times r$ block matrix with the same block structure as A. If $T \in \mathcal{C}(A)$, then $A_{i} T_{i j}=T_{i j} A_{j}$ hence $T_{i j} \in$ $\mathcal{C}\left(A_{i}, A_{j}\right)$. Conversely if $T=\left(T_{i j}\right)$ with $T_{i j} \in \mathcal{C}\left(A_{i}, A_{j}\right)$, then $A T=\left(A_{i} T_{i j}\right)$ and $T A=\left(A_{j} T_{i j}\right)$, since $T_{i j} \in \mathcal{C}\left(A_{i}, A_{j}\right)$. Then $T \in \mathcal{C}(A)$.

Proof of Theorem 3.1. Let $A \in \mathcal{M}_{n}(K)$ and q_{1}, \ldots, q_{r} be the invariant factors of A. Assume that $\mathcal{C}(A)$ is isomorphic to $\mathcal{M}_{r}(K[B])$. Then

$$
\begin{equation*}
\operatorname{dim}_{K} \mathcal{C}(A)=r^{2} \operatorname{deg}\left(m_{A}\right) \tag{3}
\end{equation*}
$$

By virtue of Lemma 3.2 we have

$$
\begin{equation*}
\operatorname{dim}_{K} \mathcal{C}(A)=\sum_{i=1}^{r}(2 r-2 i+1) d_{i} \tag{4}
\end{equation*}
$$

where $d_{i}=\operatorname{deg} q_{i}$ for all $1 \leq i \leq r$, it follows from (3) that

$$
\begin{equation*}
\sum_{i=1}^{r}(2 r-2 i+1) d_{i}=r^{2} d_{r} \tag{5}
\end{equation*}
$$

According to (5) and by remarking that $r^{2}=\sum_{i=1}^{r}(2 r-2 i+1)$, we have

$$
\begin{equation*}
\sum_{i=1}^{r}(2 r-2 i+1)\left(d_{r}-d_{i}\right)=0 \tag{6}
\end{equation*}
$$

The equality (6) gives $d_{r}=d_{i}$ for all $1 \leq i \leq r$ since $[2(r-i)+1]>0$ and $d_{r} \geq d_{i}$ for each $1 \leq i \leq r$. Consequently $q_{i}=q_{r}$ for each $1 \leq i \leq r$. Therefore $C_{A}=\left(m_{A}\right)^{r}$. Conversely, suppose that $C_{A}=\left(m_{A}\right)^{r}$. According to the following decomposition $C_{A}=\prod_{i=1}^{r} q_{i}$, where q_{1}, \ldots, q_{r} are the invariant factors of A such that $q_{i} \mid q_{i+1}$ for all $1 \leq i \leq r-1$, so we have $q_{1}=\cdots=$ $q_{r-1}=q_{r}$. By applying Theorem 2.1 we get, the following rational canonical form of A,

$$
\begin{aligned}
A & =\operatorname{diag}(B, B, \ldots, B) \\
& =\left(\begin{array}{cccc}
B & 0 & \cdots & 0 \\
0 & B & \cdots & 0 \\
\vdots & \cdots & \cdots & \vdots \\
0 & 0 & \cdots & B
\end{array}\right),
\end{aligned}
$$

where B is the companion matrix of $m_{A}=q_{1}=\cdots=q_{r}$. Then we can invoke Lemma 3.3 to conclude that the centralizer $\mathcal{C}(A)$ of the matrix A is isomorphic to $\mathcal{M}_{r}(K[B])$.

3.1. Case of a primary matrix

Let $A \in \mathcal{M}_{n}(K)$ and $B \in \mathcal{M}_{m}(K)$. Recall that the matrices A and B are said to be coprime if there exist two coprime polynomials P and Q in $K[X]$ such that $P(A)=0$ and $Q(B)=0$. If the matrices A and B are coprime, then $\mathcal{C}(A, B)=0($ see $[3])$.

Let $A \in \mathcal{M}_{n}(K)$ and P be an irreducible monic polynomial of $K[X]$. We will say that A is a P-primary matrix if the characteristic polynomial of A is a power of P.
Lemma 3.4. Let $A \in \mathcal{M}_{n}(K)$ be a non zero matrix. Then A is similar to a block diagonal P_{i}-primary matrices $\operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{s}\right)$.
Proof. Let $m_{A}=\prod_{i=1}^{s} P_{i}^{\alpha_{i}}$ be the prime decomposition of m_{A}. By the primary decomposition theorem (see Theorem 1.5.1, p. 29 in [7]), A is similar to a block diagonal P_{i}-primary matrices $\operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{s}\right)$.

Lemma 3.5. Let $A \in \mathcal{M}_{n}(K)$ be a non zero matrix. Then the centralizer $\mathcal{C}(A)$ of the matrix A is isomorph to the ring $\prod_{i=1}^{s} \mathcal{C}\left(A_{i}\right)$, where $A_{1}, A_{2}, \ldots, A_{s}$ are pairwise coprime matrices.
Proof. By Lemma 3.4, A is similar to a block diagonal P_{i}-primary matrices $\operatorname{diag}\left(A_{1}, A_{2}, \ldots, A_{s}\right)$ furthermore the A_{i} 's are pairwise coprime matrices. Hence, by Lemma 3.3, the centralizer of the matrix A is isomorph to $\prod_{i=1}^{s} \mathcal{C}\left(A_{i}\right)$.

Remark that by Lemma 3.5 the study of the centralizer $\mathcal{C}(A)$ reduces to the study of the centralizer of a P-primary matrix.

Lemma 3.6. If $A \in \mathcal{M}_{n}(K)$ is a P-primary matrix such that $m_{A}=P^{\alpha}$ and $C_{A}=P^{\beta}$ with $\alpha \leq \beta$, then there exists a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ of β such that $\lambda_{1}=\alpha$ and $q_{i}=P^{\lambda_{r-i+1}}$ for any $1 \leq i \leq r$ are the invariant factors of A.

Proof. Since $m_{A}=P^{\alpha}$ and $C_{A}=P^{\beta}$, the invariant factors of A are of the form $P^{\alpha_{i}}, 1 \leq i \leq r$ with $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{r}=\alpha$ and $\Sigma_{i=1}^{r} \alpha_{i}=\beta$. Set $\lambda_{i}=\alpha_{r-i+1}$ and $q_{i}=P^{\lambda_{r-i+1}}$ for each $1 \leq i \leq r$, we can verify easily that

- $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}=\alpha$ and $\Sigma_{i=1}^{r} \lambda_{i}=\beta$.
- $q_{i} \mid q_{i+1}$ for $1 \leq i \leq r-1, q_{r}=m_{A}$ and $\prod_{i=1}^{r} q_{i}=C_{A}$.

Theorem 3.7. Let $A \in \mathcal{M}_{n}(K)$ be a P-primary matrix. If r is the number of invariant factors of A and B is the companion matrix of m_{A}, then the following assertions are equivalent:
(1) $m_{A}=P$.
(2) $\operatorname{dim}_{K} \mathcal{C}(A)=r^{2} \operatorname{deg}(P)$.
(3) $\mathcal{C}(A) \simeq \mathcal{M}_{r}(K[B])$.

Proof. Let $m_{A}=P^{\alpha}$ and $C_{A}=P^{\beta}$.
(1) \Rightarrow (2) If $\alpha=1$, then $q_{1}=\cdots=q_{r}=P$ are the invariant factors of A and $r=\beta$. Then by Lemma 3.2

$$
\begin{aligned}
\operatorname{dim}_{K} \mathcal{C}(A) & =\sum_{i=1}^{r}(2 r-2 i+1) \operatorname{deg}\left(q_{i}\right) \\
& =\left[(2 r+1) r-2 \sum_{i=1}^{r} i\right] \operatorname{deg}(P)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[(2 r+1) r-\frac{2 r(r+1)}{2}\right] \operatorname{deg} P \\
& =r^{2} \operatorname{deg} P .
\end{aligned}
$$

(2) \Rightarrow (1) If $\operatorname{dim}_{K} \mathcal{C}(A)=r^{2} \operatorname{deg}(P)$, let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ be the partition of β such that $\lambda_{1}=\alpha$ and $q_{i}=P^{\lambda_{r-i+1}}, 1 \leq i \leq r$ are the invariant factors of A, it's enough to prove that $\lambda_{1}=\cdots=\lambda_{r}=1$. Indeed by hypothesis and by virtue of Lemma 3.2 we have $\operatorname{dim}_{K} \mathcal{C}(A)=\sum_{i=1}^{r}(2 r-2 i+1) \lambda_{r-i+1} \operatorname{deg} P=r^{2} \operatorname{deg} P$. Then by remarking that $\sum_{i=1}^{r}(2 r-2 i+1)=r^{2}$ we get $\sum_{i=1}^{r}[(2 r-2 i+$ 1) $\left.\left(\lambda_{r-i+1}-1\right)\right]=0$. Therefore $\left(\lambda_{r-i+1}-1\right)=0$ for all $1 \leq i \leq r$ because $[2(r-i)+1]>0$ for each $1 \leq i \leq r$. Thus $\lambda_{1}=\cdots=\lambda_{r}=1$.

For the equilibrium (1) $\Leftrightarrow(3)$, it suffice to apply Theorem 3.1.
Theorem 3.8. Let $A \in \mathcal{M}_{n}(K)$ be a P-primary matrix such that $C_{A}=P^{\beta}$. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ be the partition of β such that q_{1}, \ldots, q_{r} are the invariant factors of A where, $q_{i}=P^{\lambda_{r-i+1}}$ for any $1 \leq i \leq r$. Then

$$
\operatorname{dim}_{K} \mathcal{C}(A)=\left[\sum_{k=1}^{s}{\lambda^{\prime}}_{k}^{\prime}\right] \operatorname{deg}(P)
$$

where $\lambda^{*}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{s}^{\prime}\right)$ is the conjugate partition of the partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$.
To prove the theorem we need the following lemma:
Lemma 3.9 ([7, Proposition 3.3.1, p. 106]). Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ be a partition of the number n and $\lambda^{*}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{s}^{\prime}\right)$ be its conjugate partition. Then

$$
\sum_{i=1}^{k}(2 i-1) \lambda_{i}=\sum_{i=1}^{s} \lambda_{i}^{\prime 2}
$$

Proof. By Lemma 3.2 and Lemma 3.9, we have

$$
\begin{aligned}
\operatorname{dim}_{K} \mathcal{C}(A) & =\sum_{i=1}^{r}(2 r-2 i+1) \operatorname{deg}\left(q_{i}\right) \\
& =\sum_{i=1}^{r}(2(r-i+1)-1) \operatorname{deg}\left(q_{i}\right) \\
& =\sum_{j=1}^{r}(2 j-1) \operatorname{deg}\left(q_{r-j+1}\right) \\
& =\sum_{j=1}^{r}(2 j-1) \operatorname{deg}\left(P^{\lambda_{j}}\right) \\
& =\left[\sum_{j=1}^{r}(2 j-1) \lambda_{j}\right] \operatorname{deg}(P)
\end{aligned}
$$

$$
=\left[\sum_{i=1}^{s}{\lambda^{\prime}}_{i}^{2}\right] \operatorname{deg}(P) .
$$

Thus the desired result.
Corollary 3.10. Let $A \in \mathcal{M}_{n}(K)$ be a non zero matrix. If $m_{A}=\prod_{i=1}^{r} P_{i}$ and $C_{A}=\prod_{i=1}^{r} P_{i}^{\beta_{i}}$, where P_{i} is an irreducible monic polynomial of $K[X]$ for all $1 \leq i \leq r$. Then

$$
\operatorname{dim}_{K} \mathcal{C}(A)=\sum_{i=1}^{r} \beta_{i}^{2} \operatorname{deg}\left(P_{i}\right)
$$

Proof. By Theorem 3.7 we have $\operatorname{dim}_{K} \mathcal{C}\left(A_{i}\right)=\beta_{i}^{2} \operatorname{deg}(P)$ for all $1 \leq i \leq r$. Then we invoke Lemma 3.5, to obtain

$$
\begin{aligned}
\operatorname{dim}_{K} \mathcal{C}(A) & =\operatorname{dim}_{K}\left(\prod_{i=1}^{r} \mathcal{C}\left(A_{i}\right)\right) \\
& =\sum_{i=1}^{r} \operatorname{dim}_{K} \mathcal{C}\left(A_{i}\right) \\
& =\sum_{i=1}^{r} \beta_{i}^{2} \operatorname{deg}\left(P_{i}\right)
\end{aligned}
$$

We deduce the well known result (see [4], or [7]).
Corollary 3.11. Let $A \in \mathcal{M}_{n}(K)$. If $m_{A}=\prod_{i=1}^{r}\left(X-\lambda_{i}\right)$ and $C_{A}(X)=$ $\prod_{i=1}^{r}\left(X-\lambda_{i}\right)^{\beta_{i}}$, then $\operatorname{dim}_{K} \mathcal{C}(A)=\sum_{i=1}^{r} \beta_{i}^{2}$.
Acknowledgement. The author sincerely thanks the reviewer for his valuable comments.

References

[1] W. A. Adkins and S. H. Weintraub, Algebra, Graduate Texts in Mathematics, 136, Springer-Verlag, New York, 1992. https://doi.org/10.1007/978-1-4612-0923-2
[2] G. E. Andrews, The theory of partitions, reprint of the 1976 original, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998.
[3] M. Charkani and S. Bouarga, Polynomial solution of sylvester matrix equation, Inter. J. Alg. 9 (2015), 185-194.
[4] X. Gourdon, Les maths en tête: Algèbre [maths in head: Algebra], Ellipses, Paris.
[5] R. Lal, Algebra 2-linear algebra, Galois theory, representation theory, group extensions and Schur multiplier, Infosys Science Foundation Series, Springer, Singapore, 2017.
[6] S. Lang, Algebra, revised third edition, Graduate Texts in Mathematics, 211, SpringerVerlag, New York, 2002. https://doi.org/10.1007/978-1-4613-0041-0
[7] K. C. O'Meara, J. Clark, and C. I. Vinsonhaler, Advanced Topics in Linear Algebra, Oxford University Press, Oxford, 2011.
[8] G. Weiss, The Theory of Matrices. vol. 1 and vol. 2. F. R. Gantmacher. Chelsea Publishing Company, New York 68, 1959. vol. 1: $x+374$ pp. vol. 2: $x+277$ pp. 6 each, Science 131 (1960), 1216-1216.

Smail Bouarga
Department of Applied Mathematics
Faculty of Applied Sciences
University Ibn Zohr
P.O.Box 6146 Cite Azrou, 86153 Ait Melloul, Agadir, Morocco

Email address: s.bouarga@uiz.ac.ma

[^0]: Received March 12, 2022; Revised May 28, 2022; Accepted June 28, 2022.
 2020 Mathematics Subject Classification. 15xx.
 Key words and phrases. Centralizer, invariant factors, primary matrix, Sylvester space.

