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THE u-S-WEAK GLOBAL DIMENSIONS OF

COMMUTATIVE RINGS

Xiaolei Zhang

Abstract. In this paper, we introduce and study the u-S-weak global

dimension u-S-w.gl.dim(R) of a commutative ring R for some multiplica-
tive subset S of R. Moreover, the u-S-weak global dimensions of factor

rings and polynomial rings are investigated.

Throughout this article, R is always a commutative ring with identity 1 and
S is always a multiplicative subset of R, that is, 1 ∈ S and s1s2 ∈ S for any
s1 ∈ S, s2 ∈ S. We denote by U(R) the set of all units in R. In 2002, Anderson
and Dumitrescu [1] defined an S-Noetherian ring R for which any ideal of R
is S-finite. Recall from [1] that an R-module M is called S-finite provided
that sM ⊆ F for some s ∈ S and some finitely generated submodule F of M .
An R-module T is called u-S-torsion if sT = 0 for some s ∈ S (see [7]). So
an R-module M is S-finite if and only if M/F is u-S-torsion for some finitely
generated submodule F of M . The idea derived from u-S-torsion modules is
deserved to be further investigated. In [7], the author of this paper introduced
the class of u-S-flat modules F for which the functor F ⊗R − preserves u-S-
exact sequences. The class of u-S-flat modules can be seen as a “uniform”
generalization of that of flat modules, since an R-module F is u-S-flat if and
only if TorR1 (F,M) is u-S-torsion for any R-module M (see [7, Theorem 3.2]).
The class of u-S-flat modules owns the following u-S-hereditary property: let

0 → A
f−→ B

g−→ C → 0 be a u-S-exact sequence, if B and C are u-S-flat so is
A (see [7, Proposition 3.4]). So it is worth to study the u-S-analogue of flat
dimensions of R-modules and the u-S-analogue of a weak global dimension of
commutative rings.

In this article, we define the u-S-flat dimension u-S-fdR(M) of an R-module
M to be the length of the shortest u-S-flat u-S-resolution of M . We charac-
terize u-S-flat dimensions of R-modules using the uniform torsion property of
the “Tor” functors in Proposition 3.2. Besides, we obtain a new local charac-
terization of flat dimensions of R-modules (see Corollary 3.7). The u-S-weak
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global dimension u-S-w.gl.dim(R) of a commutative ring R is defined to be
the supremum of u-S-flat dimensions of all R-modules. A characterization of
u-S-weak global dimensions is given in Proposition 3.2. Examples of rings
R for which u-S-w.gl.dim(R) 6= w.gl.dim(RS) can be found in Example 3.11.
U -S-von Neumann regular rings are firstly introduced in [7] for which there
exist s ∈ S and r ∈ R such that sa = ra2 for any a ∈ R. By [7, Theorem
3.11], a ring R is u-S-von Neumann regular if and only if all R-modules are
u-S-flat. So u-S-von Neumann regular rings are exactly commutative rings
with u-S-weak global dimensions equal to 0 (see Corollary 3.8). We also study
commutative rings R with u-S-w.gl.dim(R) at most 1. The nontrivial example
of a commutative ring R with u-S-w.gl.dim(R) ≤ 1 but an infinite weak global
dimension is given in Example 3.11. In the final section, we investigate the
u-S-weak global dimensions of factor rings and polynomial rings and show that
u-S-w.gl.dim(R[x]) = u-S-w.gl.dim(R) + 1 for a ring R under some condition
(see Theorem 4.7).

1. Preliminaries

Recall from [7] that an R-module T is called a u-S-torsion module provided

that there exists an element s ∈ S such that sT = 0. An R-sequence M
f−→

N
g−→ L is called u-S-exact (at N) provided that there is an element s ∈ S such

that sKer(g) ⊆ Im(f) and sIm(f) ⊆ Ker(g). We say a long R-sequence · · · →
An−1

fn−→ An
fn+1−−−→ An+1 → · · · is u-S-exact, if for any n there is an element

s ∈ S such that sKer(fn+1) ⊆ Im(fn) and sIm(fn) ⊆ Ker(fn+1). A u-S-exact
sequence 0 → A → B → C → 0 is called a short u-S-exact sequence. An R-
homomorphism f : M → N is a u-S-monomorphism (resp., u-S-epimorphism,

u-S-isomorphism) provided 0 → M
f−→ N (resp., M

f−→ N → 0, 0 → M
f−→

N → 0 ) is u-S-exact. It is easy to verify an R-homomorphism f : M → N is a
u-S-monomorphism (resp., u-S-epimorphism, u-S-isomorphism) if and only if
Ker(f) (resp., Coker(f), both Ker(f) and Coker(f)) is a u-S-torsion module.

Proposition 1.1 ([6, Lemma 2.1]). Let R be a ring and S a multiplicative
subset of R. Suppose there is a u-S-isomorphism f : M → N for R-modules
M and N . Then there is a u-S-isomorphism g : N → M . Moreover, there is
t ∈ S such that f ◦ g = tIdN and g ◦ f = tIdM .

Let R be a ring and S a multiplicative subset of R. Let M and N be R-
modules. We say M is u-S-isomorphic to N if there exists a u-S-isomorphism
f : M → N . A family C of R-modules is said to be closed under u-S-
isomorphisms if M is u-S-isomorphic to N and M is in C, then N is also
in C. It follows from Proposition 1.1 that the existence of u-S-isomorphisms of
two R-modules is an equivalence relation. Next, we give a u-S-analogue of the
Five Lemma.
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Theorem 1.2 (u-S-analogue of Five Lemma). Let R be a ring and S a mul-
tiplicative subset of R. Consider the following commutative diagram with u-S-
exact rows:

A

fA
��

g1 // B

fB
��

g2 // C

fC
��

g3 // D
g4 //

fD
��

E

fE
��

A′
h1 // B′

h2 // C ′
h3 // D′

h4 // E′.

(1) If fB and fD are u-S-monomorphisms and fA is a u-S-epimorphism,
then fC is a u-S-monomorphism.

(2) If fB and fD are u-S-epimorphisms and fE is a u-S-monomorphism,
then fC is a u-S-epimorphism.

(3) If fA is a u-S-epimorphism, fE is a u-S-monomorphism, and fB and
fD are u-S-isomorphisms, then fC is a u-S-isomorphism.

(4) If fA, fB, fD and fE are all u-S-isomorphisms, then fC is a u-S-
isomorphism.

Proof. (1) Let x ∈ Ker(fC). Then fDg3(x) = h3fC(x) = 0. Since fD is a u-
S-monomorphism, s1Ker(fD) = 0 for some s1 ∈ S. So s1g3(x) = g3(s1x) = 0.
Since the top row is u-S-exact, there exists s2 ∈ S such that s2Ker(g3) ⊆
Im(g2). Thus there exists b ∈ B such that g2(b) = s2s1x. Hence h2fB(b) =
fCg2(b) = fC(s2s1x) = 0. Thus there exists s3 ∈ S such that s3Ker(h2) ⊆
Im(h1). So there exists a′ ∈ A′ such that h1(a′) = s2fB(b). Since fA is a
u-S-epimorphism, there exists s4 ∈ S such that s4A

′ ⊆ Im(fA). So there exists
a ∈ A such that s4a

′ = fA(a). Hence s4s2fB(b) = s4h1(a′) = h1(fA(a)) =
fB(g1(a)). So s4s2b − g1(a) ∈ Ker(fB). Since fB is a u-S-monomorphism,
there exists s5 ∈ S such that s5Ker(fB) = 0. Thus s5(s4s2b − g1(a)) = 0.
So s5s4s2s2s1x = s5(g2(s4s2b)) = s5g2(g1(a)). Since the top row is u-S-exact
at B, there exists s6 ∈ S such that s6Im(g1) ⊆ Ker(g2). So s6s5s4s2s2s1x =
s5g2(s6g1(a)) = 0. Consequently, if we set s = s6s5s4s2s2s1, then sKer(fC) =
0. It follows that fC is a u-S-monomorphism.

(2) Let x ∈ C ′. Since fD is a u-S-epimorphism, there exists s1 ∈ S such
that s1D

′ ⊆ Im(fD). Thus there exists d ∈ D such that fD(d) = s1h3(x).
By the commutativity of the right square, we have fEg4(d) = h4fD(d) =
s1h4(h3(x)). Since the bottom row is u-S-exact at D′, there exists s2 ∈ S
such that s4Im(h3) ⊆ Ker(h4). So s4fE(g4(d)) = s1h4(s4h3(x)) = 0. Since fE
is a u-S-monomorphism, there exists s3 ∈ S such that s3Ker(fE) = 0. Thus
s3s4g4(d) = 0. Since the top row is u-S-exact at D, there there exists s5 ∈ S
such that s5Ker(g4) ⊆ Im(g3). So there exists c ∈ C such that s5s3s4d =
g3(c). Hence s5s3s4fD(d) = fD(g3(c)) = h3(fC(c)). Since s5s3s4fD(d) =
h3(s1s5s3s4x), we have fC(c) − s1s5s3s4x ∈ Ker(h3). Since the bottom row
is u-S-exact at C ′, there exists s6 ∈ S such that s6Ker(h3) ⊆ Im(h2). Thus
there exists b′ ∈ B′ such that s6(fC(c)− s1s5s3s4x) = h2(b′). Since fB is a u-
S-epimorphism, there exists s7 ∈ S such that s7B

′ ⊆ Im(fB). So s7b
′ = fB(b)

for some b ∈ B. Thus fC(g2(b)) = h2(fB(b)) = s7h2(b′) = s7(s6(fC(c) −
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s1s5s3s4x)). So s7s6s1s5s3s4x = s7s6fC(c) − fC(g2(b)) = fC(s7s6c − g2(b)) ∈
Im(fC). Consequently, if we set s = s7s6s1s5s3s4, then sC ′ ⊆ Im(fC). It
follows that fC is a u-S-epimorphism.

It is easy to see (3) follows from (1) and (2), while (4) follows from (3). �

Recall from [7, Definition 3.1] that an R-module F is called u-S-flat provided
that for any u-S-exact sequence 0 → A → B → C → 0, the induced sequence
0→ A⊗R F → B ⊗R F → C ⊗R F → 0 is u-S-exact. It is easy to verify that
the class of u-S-flat modules is closed under u-S-isomorphisms by the following
result.

Lemma 1.3 ([7, Theorem 3.2]). Let R be a ring, S a multiplicative subset of
R and F an R-module. The following assertions are equivalent:

(1) F is u-S-flat;

(2) for any short exact sequence 0 → A
f−→ B

g−→ C → 0, the induced

sequence 0→ A⊗R F
f⊗RF−−−−→ B⊗R F

g⊗RF−−−−→ C⊗R F → 0 is u-S-exact;
(3) TorR1 (M,F ) is u-S-torsion for any R-module M ;

(4) TorRn (M,F ) is u-S-torsion for any R-module M and n ≥ 1.

The following result says that a short u-S-exact sequence induces a long
u-S-exact sequence by the functor “Tor” as the classical case.

Theorem 1.4. Let R be a ring, S a multiplicative subset of R and N an

R-module. Let 0 → A
f−→ B

g−→ C → 0 be a u-S-exact sequence of R-
modules. Then for any n ≥ 1 there is an R-homomorphism δn : TorRn (C,N)→
TorRn−1(A,N) such that the induced sequence

· · · → TorRn (A,N)→ TorRn (B,N)→ TorRn (C,N)
δn−→ TorRn−1(A,N)→

TorRn−1(B,N)→ · · · → TorR1 (C,N)
δ1−→ A⊗R N → B ⊗R N → C ⊗R N → 0

is u-S-exact.

Proof. Since the sequence 0 → A
f−→ B

g−→ C → 0 is u-S-exact at B, there

are three exact sequences 0 → Ker(f)
iKer(f)−−−−→ A

πIm(f)−−−−→ Im(f) → 0, 0 →
Ker(g)

iKer(g)−−−−→ B
πIm(g)−−−−→ Im(g) → 0 and 0 → Im(g)

iIm(g)−−−−→ C
πCoker(g)−−−−−−→

Coker(g) → 0 with Ker(f) and Coker(g) u-S-torsion. There also exists s ∈ S
such that sKer(g) ⊆ Im(f) and sIm(f) ⊆ Ker(g). Denote T = Ker(f) and
T ′ = Coker(g).

Firstly, consider the exact sequence

TorRn+1(T ′, N)→ TorRn (Im(g), N)
TorRn (iIm(g),N)
−−−−−−−−−−→ TorRn (C,N)→ TorRn (T ′, N).

Since T ′ is u-S-torsion, TorRn+1(T ′, N) and TorRn (T ′, N) are u-S-torsion. Thus

TorRn (iIm(g), N) is a u-S-isomorphism. So there is also a u-S-isomorphism
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hnIm(g) : TorRn (C,N)→ TorRn (Im(g), N) by Proposition 1.1. Consider the exact
sequence:

TorRn−1(T,N)→ TorRn−1(A,N)
TorRn−1(πIm(f),N)
−−−−−−−−−−−→ TorRn−1(Im(f), N)→ TorRn−2(T,N).

Since T is u-S-torsion, we have TorRn−1(πIm(f), N) is a u-S-isomorphism. So

there is also a u-S-isomorphism hn−1Im(f) : TorRn−1(Im(f), N)→ TorRn−1(A,N) by

Proposition 1.1. We have two exact sequences

TorRn+1(T1, N)→ TorRn (sKer(g), N)
TorRn (i1sKer(g),N)
−−−−−−−−−−−→ TorRn (Im(f), N)→ TorRn+1(T1, N)

and

TorRn+1(T2, N)→ TorRn (sKer(g), N)
TorRn (i2sKer(g),N)
−−−−−−−−−−−→ TorRn (Ker(g), N)→ TorRn+1(T2, N),

where T1 = Im(f)/sKer(g) and T2 = Im(f)/sIm(f) are u-S-torsion. So

TorRn (i1sKer(g), N) and TorRn (i2sKer(g), N) are u-S-isomorphisms. Thus there is a

u-S-isomorphism hnsKer(g) : TorRn (Ker(g), N) → TorRn (sKer(g), N). Note that

there is an exact sequence TorRn (B,N)
TorRn (πIm(g),N)
−−−−−−−−−−→ TorRn (Im(g), N)

δnIm(g)−−−−→

TorRn−1(Ker(g), N)
TorRn−1(iKer(g),N)
−−−−−−−−−−−−→ TorRn−1(B,N). Set δn = hnIm(g) ◦ δ

n
Im(g) ◦

hnsKer(g) ◦ TorRn (i1sKer(g), N) ◦ hn−1Im(f) : TorRn (C,N) → TorRn−1(A,N). Since

hnIm(g), δ
n
Im(g), h

n
sKer(g) and hn−1Im(f) are u-S-isomorphisms, we have the sequence

TorRn (B,N)→ TorRn (C,N)
δn−→ TorRn−1(A,N) → TorRn−1(B,N) is u-S-exact.

Secondly, consider the exact sequence:

TorRn+1(T,N)→ TorRn (A,N)
TorRn (iIm(f),N)
−−−−−−−−−−→ TorRn (Im(f), N)→ TorRn (T,N).

Since T is u-S-torsion, TorRn (iIm(f), N) is a u-S-isomorphism. Consider the
exact sequences:

TorRn+1(Im(g), N)→ TorRn (Ker(g), N)
TorRn (iKer(g),N)
−−−−−−−−−−→ TorRn (B,N)→ TorRn (Im(g), N)

and

TorRn+1(T ′, N)→ TorRn (Im(g), N)
TorRn (iIm(g),N)
−−−−−−−−−−→ TorRn (C,N)→ TorRn (T ′, N).

Since T ′ is u-S-torsion, we have TorRn (iIm(g), N) is a u-S-isomorphism. Since

TorRn (i1sKer(g), N) and TorRn (i2sKer(g), N) are u-S-isomorphisms as above,

TorRn (A,N)→ TorRn (B,N)→ TorRn (C,N)

is u-S-exact at TorRn (B,N).
Continue by the above method, we have a u-S-exact sequence:

· · · → TorRn (A,N)→ TorRn (B,N)→ TorRn (C,N)
δn−→ TorRn−1(A,N)→

TorRn−1(B,N)→ · · · → TorR1 (C,N)
δ1−→ A⊗R N → B ⊗R N → C ⊗R N → 0.

�
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Corollary 1.5. Let R be a ring, S a multiplicative subset of R and N an R-

module. Suppose 0→ A
f−→ B

g−→ C → 0 is a u-S-exact sequence of R-modules
where B is u-S-flat. Then TorRn+1(C,N) is u-S-isomorphic to TorRn (A,N)

for any n ≥ 0. Consequently, TorRn+1(C,N) is u-S-torsion if and only if

TorRn (A,N) is u-S-torsion for any n ≥ 0.

Proof. It follows from Lemma 1.3 and Theorem 1.4. �

2. On the u-S-flat dimensions of modules

Let R be a ring. The flat dimension of an R-module M is defined as the
shortest flat resolution of M . We now introduce the notion of a u-S-flat di-
mension of an R-module as follows.

Definition 2.1. Let R be a ring, S a multiplicative subset of R and M an
R-module. We write u-S-fdR(M) ≤ n (u-S-fd abbreviates a uniformly S-flat
dimension) if there exists a u-S-exact sequence of R-modules

(♦) 0→ Fn → · · · → F1 → F0 →M → 0

where each Fi is u-S-flat for i = 0, . . . , n. The u-S-exact sequence (♦) is said
to be a u-S-flat u-S-resolution of length n of M . If such a finite u-S-flat u-
S-resolution does not exist, then we say u-S-fdR(M) = ∞; otherwise, define
u-S-fdR(M) = n if n is the length of the shortest u-S-flat u-S-resolution of
M .

Trivially, the u-S-flat dimension of an R-module M cannot exceed its flat
dimension for any multiplicative subset S of R. And if S is composed of units,
then u-S-fdR(M) = fdR(M). It is also obvious that an R-module M is u-S-flat
if and only if u-S-fdR(M) = 0.

Lemma 2.2. Let R be a ring and S a multiplicative subset of R. If A is
u-S-isomorphic to B, then u-S-fdR(A) = u-S-fdR(B).

Proof. Let f : A→ B be a u-S-isomorphism. If · · · → Fn → · · · → F1 → F0
g−→

A → 0 is a u-S-resolution of A, then · · · → Fn → · · · → F1 → F0
f◦g−−→ B → 0

is a u-S-resolution of B. So u-S-fdR(A) ≥ u-S-fdR(B). Note that there is
a u-S-isomorphism g : B → A by Proposition 1.1. Similarly we have u-S-
fdR(B) ≥ u-S-fdR(A). �

Proposition 2.3. Let R be a ring and S a multiplicative subset of R. The
following statements are equivalent for an R-module M :

(1) u-S-fdR(M) ≤ n;

(2) TorRn+k(M,N) is u-S-torsion for all R-modules N and all k > 0;

(3) TorRn+1(M,N) is u-S-torsion for all R-modules N ;

(4) there exists s ∈ S such that sTorRn+1(M,R/I) = 0 for all ideals I of R;
(5) if 0→ Fn → · · · → F1 → F0 →M → 0 is a u-S-exact sequence, where

F0, F1, . . . , Fn−1 are u-S-flat R-modules, then Fn is u-S-flat;
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(6) if 0→ Fn → · · · → F1 → F0 →M → 0 is a u-S-exact sequence, where
F0, F1, . . . , Fn−1 are flat R-modules, then Fn is u-S-flat;

(7) if 0 → Fn → · · · → F1 → F0 → M → 0 is an exact sequence, where
F0, F1, . . . , Fn−1 are u-S-flat R-modules, then Fn is u-S-flat;

(8) if 0 → Fn → · · · → F1 → F0 → M → 0 is an exact sequence, where
F0, F1, . . . , Fn−1 are flat R-modules, then Fn is u-S-flat;

(9) there exists a u-S-exact sequence 0→ Fn → · · · → F1 → F0 →M → 0,
where F0, F1, . . . , Fn−1 are flat R-modules and Fn is u-S-flat;

(10) there exists an exact sequence 0 → Fn → · · · → F1 → F0 → M → 0,
where F0, F1, . . . , Fn−1 are flat R-modules and Fn is u-S-flat;

(11) there exists an exact sequence 0 → Fn → · · · → F1 → F0 → M → 0,
where F0, F1, . . . , Fn are u-S-flat R-modules.

Proof. (1)⇒ (2): We prove (2) by induction on n. For the case n = 0, we have
M is u-S-flat, and then (2) holds by [7, Theorem 3.2]. If n > 0, then there is a
u-S-exact sequence 0 → Fn → · · · → F1 → F0 → M → 0, where each Fi is u-
S-flat for i = 0, . . . , n. Set K0 = Ker(F0 →M) and L0 = Im(F1 → F0). Then
both 0→ K0 → F0 →M → 0 and 0→ Fn → Fn−1 → · · · → F1 → L0 → 0 are
u-S-exact. Since u-S-fdR(L0) ≤ n − 1 and L0 is u-S-isomorphic to K0, u-S-

fdR(K0) ≤ n−1 by Lemma 2.2. By induction, TorRn−1+k(K0, N) is u-S-torsion
for all u-S-torsion R-modules N and all k > 0. It follows from Corollary 1.5
that TorRn+k(M,N) is u-S-torsion.

(2)⇒ (3), (5)⇒ (6)⇒ (8) and (5)⇒ (7)⇒ (8): Trivial.
(3) ⇒ (4): Let N =

⊕
I�RR/I. Then there exists an element s ∈ S such

that sTorRn+1(M,N) = 0. So s
⊕

I�R TorRn+1(M,R/I) = 0. It follows that

sTorRn+1(M,R/I) = 0 for all ideals I of R.
(4) ⇒ (3): Let N be generated by {ni : i ∈ Γ}. Set N0 = 0 and Nα =

〈ni : i < α〉 for each α ≤ Γ. Then N has a continuous filtration {Nα :
α ≤ Γ} with Nα+1/Nα ∼= R/Iα+1 and Iα = AnnR(nα + Nα ∩ Rnα). Since

sTorRn+1(M,R/Iα) = 0 for each α ≤ Γ, it is easy to verify sTorRn+1(M,Nα) = 0

by transfinite induction on α. So sTorRn+1(M,N) = 0.

(3)⇒ (5): Let 0→ Fn
dn−→ Fn−1

dn−1−−−→ Fn−2 → · · ·
d2−→ F1

d1−→ F0
d0−→ M →

0 be a u-S-exact sequence, where F0, F1, . . . , Fn−1 are u-S-flat. Then Fn is
u-S-flat if and only if TorR1 (Fn, N) is u-S-torsion for all R-modules N , if and

only if TorR2 (Im(dn−1), N) is u-S-torsion for all R-modules N . Following these

steps, we can show Fn is u-S-flat if and only if TorRn+1(M,N) is u-S-torsion
for all R-modules N .

(10)⇒ (11)⇒ (1) and (10)⇒ (9)⇒ (1): Trivial.

(8) ⇒ (10): Let · · · → Pn → Pn−1
dn−1−−−→ Pn−2 → · · · → P0 → M → 0 be

a projective resolution of M . Set Fn = Ker(dn−1). Then we have an exact

sequence 0 → Fn → Pn−1
dn−1−−−→ Pn−2 → · · · → P0 → M → 0. By (8), Fn is

u-S-flat. So (10) holds. �
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Corollary 2.4. Let R be a ring and S′ ⊆ S multiplicative subsets of R. Let
M be an R-module. Then u-S-fdR(M) ≤ S′-fdR(M).

Proof. Let N be an R-module. If TorRn+1(M,N) is uniformly S′-torsion, then

TorRn+1(M,N) is u-S-torsion. The result follows by Proposition 2.3. �

Let R be a ring, S a multiplicative subset of R and M an R-module. For
any s ∈ S, we denote by Rs the localization of R at {sn : n ≥ 0} and denote
Ms = M ⊗R Rs as an Rs-module.

Corollary 2.5. Let R be a ring, S a multiplicative subset of R and M an
R-module. If u-S-fdR(M) ≤ n, then there exists an element s ∈ S such that
fdRs(Ms) ≤ n.

Proof. Let M be an R-module with u-S-fdR(M) ≤ n. Then there is an element

s ∈ S such that sTorRn+1(R/I,M) = 0 for any ideal I of R by Proposition

2.3. Let Is be an ideal of Rs with I an ideal of R. Then TorRs
n+1(Rs/Is,Ms) ∼=

TorRn+1(R/I,M)⊗RRs = 0 since sTorRn+1(R/I,M) = 0. Hence fdRs
(Ms) ≤ n.

�

Corollary 2.6. Let R be a ring and S a multiplicative subset of R. Let M be
an R-module. Then u-S-fdR(M) ≥fdRS

MS. Moreover, if S is composed of
finite elements, then u-S-fdR(M) =fdRS

MS.

Proof. Let · · · → Fn → · · · → F1 → F0 → M → 0 be an exact sequence with
each Fi u-S-flat. By localizing at S, we can obtain a flat resolution of MS over
RS as follows:

→ (Fn)S → · · · → (F1)S → (F0)S → (M)S → 0.

So u-S-fdR(M) ≥fdRS
MS by Proposition 2.3. Suppose S is composed of finite

elements and fdRS
MS = n. Let 0→ Fn → Fn−1 → · · · → F1 → F0 →M → 0

be an exact sequence, where Fi is flat over R for any i = 0, . . . , n−1. Localizing
at S, we have (Fn)S is flat over RS . By [7, Proposition 3.8], F is u-S-flat. So
u-S-fdR(M) ≤ n by Proposition 2.3. �

Proposition 2.7. Let R be a ring and S a multiplicative subset of R. Let
0 → A → B → C → 0 be a u-S-exact sequence of R-modules. Then the
following assertions hold.

(1) u-S-fdR(C) ≤ 1 + max{u-S-fdR(A), u-S-fdR(B)}.
(2) If u-S-fdR(B) < u-S-fdR(C), then u-S-fdR(A) = u-S-fdR(C)− 1 >

u-S-fdR(B).

Proof. The proof is similar with that of the classical case (see [5, Theorem
3.6.7]). So we omit it. �

Let p be a prime ideal of R and M an R-module. We denote u-p-fdR(M) to
be u-(R−p)-fdR(M) briefly. The next result gives a new local characterization
of flat dimension of an R-module.
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Proposition 2.8. Let R be a ring and M an R-module. Then

fdR(M) = sup{u-p-fdR(M) : p ∈ Spec(R)}
= sup{u-m-fdR(M) : m ∈ Max(R)}.

Proof. Trivially, sup{u-m-fdR(M) : m ∈ Max(R)} ≤ sup{u-p-fdR(M) : p ∈
Spec(R)} ≤ fdR(M). Suppose sup{u-m-fdR(M) : m ∈ Max(R)} = n. For any

R-module N , there exists an element sm ∈ R−m such that smTorRn+1(M,N) =
0 by Proposition 2.3. Since the ideal generated by all sm is R, we have
TorRn+1(M,N) = 0 for all R-modules N . So fdR(M) ≤ n. Suppose sup{u-
m-fdR(M) : m ∈ Max(R)} = ∞. Then for any n ≥ 0, there exists a maximal

ideal m and an element sm ∈ R − m such that smTorRn+1(M,N) 6= 0 for some

R-module N . So for any n ≥ 0, we have TorRn+1(M,N) 6= 0 for some R-module
N . Thus fdR(M) =∞. So the equalities hold. �

3. On the u-S-weak global dimensions of rings

Recall that the weak global dimension w.gl.dim(R) of a ring R is the supre-
mum of flat dimensions of all R-modules. Now, we introduce the u-S-analogue
of weak global dimensions of rings R for a multiplicative subset S of R.

Definition 3.1. The u-S-weak global dimension of a ring R is defined by

u-S-w.gl.dim(R) = sup{u-S-fdR(M) : M is an R-module}.

Obviously, u-S-w.gl.dim(R) ≤w.gl.dim(R) for any multiplicative subset S of
R. And if S is composed of units, then u-S-w.gl.dim(R) = w.gl.dim(R). The
next result characterizes the u-S-weak global dimension of a ring R.

Proposition 3.2. Let R be a ring and S a multiplicative subset of R. The
following statements are equivalent for R:

(1) u-S-w.gl.dim(R) ≤ n;
(2) u-S-fdR(M) ≤ n for all R-modules M ;

(3) TorRn+k(M,N) is u-S-torsion for all R-modules M,N and all k > 0;

(4) TorRn+1(M,N) is u-S-torsion for all R-modules M,N ;

(5) there exists an element s ∈ S such that sTorRn+1(R/I,R/J) for any
ideals I and J of R.

Proof. (1)⇒ (2) and (3)⇒ (4): These are trivial.
(2)⇒ (3): This follows from Proposition 2.3.
(4)⇒ (1): Let M be an R-module and 0→ Fn → · · · → F1 → F0 →M → 0

an exact sequence, where F0, F1, . . . , Fn−1 are flat R-modules. To complete the
proof, it suffices, by Proposition 2.3, to prove that Fn is u-S-flat. Let N be an
R-module. Thus u-S-fdR(N) ≤ n by (4). It follows from Corollary 1.5 that

TorR1 (N,Fn) ∼= TorRn+1(N,M) is u-S-torsion. Thus Fn is u-S-flat.
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(4) ⇒ (5): Let M =
⊕

I�RR/I and N =
⊕

J�RR/J . Then there exists
s ∈ S such that

sTorRn+1(M,N) = s
⊕

I�R,J�R

TorRn+1(R/I,R/J) = 0.

Thus sTorRn+1(R/I,R/J) = 0 for any ideals I, J of R.
(5) ⇒ (4): Suppose M is generated by {mi : i ∈ Γ} and N is generated

by {ni : i ∈ Λ}. Set M0 = 0 and Mα = 〈mi : i < α〉 for each α ≤ Γ.
Then M has a continuous filtration {Mα : α ≤ Γ} with Mα+1/Mα

∼= R/Iα+1

and Iα = AnnR(mα + Mα ∩ Rmα). Similarly, N has a continuous filtration
{Nβ : β ≤ Λ} with Nβ+1/Nβ ∼= R/Jβ+1 and Jβ = AnnR(nβ + Nβ ∩ Rnβ).

Since sTorRn+1(R/Iα, R/Jβ) = 0 for each α ≤ Γ and β ≤ Λ, it is easy to verify

sTorRn+1(M,N) = 0 by transfinite induction on both positions of M and N . �

The following Corollaries 3.4, 3.5, 3.3 and 3.7 can be deduced by Corollaries
2.5, 2.6, 2.4 and Proposition 2.8.

Corollary 3.3. Let R be a ring and S′ ⊆ S multiplicative subsets of R. Then
u-S-w.gl.dim(R) ≤ S′-w.gl.dim(R).

Corollary 3.4. Let R be a ring and S a multiplicative subset of R. If u-S-
w.gl.dim(R) ≤ n, then there exists an element s ∈ S such that w.gl.dim(Rs) ≤
n.

Corollary 3.5. Let R be a ring and S a multiplicative subset of R. Then u-
S-w.gl.dim(R) ≤ w.gl.dim(RS). Moreover, if S is composed of finite elements,
then u-S-w.gl.dim(R) =w.gl.dim(RS).

The following example shows that the reverse inequality of Corollary 3.5
does not hold in general.

Example 3.6. Let R = k[x1, x2, . . . , xn+1] be a polynomial ring with n + 1
indeterminates over a field k (n ≥ 0). Set S = k[x1] − {0}. Then S is a
multiplicative subset of R and RS = k(x1)[x2, . . . , xn+1] is a polynomial ring
with n indeterminates over the field k(x1). So w.gl.dim(RS) = n by [5, Theorem
3.8.23]. Let s ∈ S. Then we have Rs = k[x1]s[x2, . . . , xn+1]. Since k[x1] is not a
G-domain, k[x1]s is not a field (see [4, Theorem 21]). Thus w.gl.dim(k[x1]s) =
1. So w.gl.dim(Rs) = n + 1 for any s ∈ S by [5, Theorem 3.8.23] again.
Consequently u-S-w.gl.dim(R) ≥ n+ 1 by Corollary 3.4.

Let p be a prime ideal of a ring R and u-p-w.gl.dim(R) denote u-(R −
p)-w.gl.dim(R) briefly. We have a new local characterization of weak global
dimensions of commutative rings.

Corollary 3.7. Let R be a ring. Then

w.gl.dim(R) = sup{u-p-w.gl.dim(R) : p ∈ Spec(R)}
= sup{u-m-w.gl.dim(R) : m ∈ Max(R)}.
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The rest of this section mainly consider rings with u-S-weak global dimen-
sions at most one. Recall from [7] that a ring R is called u-S-von Neumann
regular provided that there exist s ∈ S and r ∈ R such that sa = ra2 for any
a ∈ R. Thus by [7, Theorem 3.11], the following result holds.

Corollary 3.8. Let R be a ring and S a multiplicative subset of R. The
following assertions are equivalent:

(1) R is a u-S-von Neumann regular ring;

(2) for any R-module M and N , there exists s ∈ S such that sTorR1 (M,N)
= 0;

(3) there exists s ∈ S such that sTorR1 (R/I,R/J) = 0 for any ideals I and
J of R;

(4) any R-module is u-S-flat;
(5) u-S-w.gl.dim(R) = 0.

Trivially, von Neumann regular rings are u-S-von Neumann regular, and if
a ring R is a u-S-von Neumann regular ring, then RS is von Neumann regular.
It was proved in [7, Proposition 3.17] that if the multiplicative subset S of R
is composed of non-zero-divisors, then R is u-S-von Neumann regular if and
only if R is von Neumann regular. Examples of u-S-von Neumann regular rings
that are not von Neumann regular, and a ring R for which RS is von Neumann
regular but R is not u-S-von Neumann regular are given in [7].

Proposition 3.9. Let R be a ring and S a multiplicative subset of R. The
following assertions are equivalent:

(1) u-S-w.gl.dim(R) ≤ 1;
(2) any submodule of u-S-flat modules is u-S-flat;
(3) any submodule of flat modules is u-S-flat;

(4) TorR2 (M,N) is u-S-torsion for all R-modules M,N ;

(5) there exists an element s ∈ S such that sTorR2 (R/I,R/J) = 0 for any
ideals I, J of R.

Proof. The equivalences follow from Proposition 3.2. �

The following lemma can be found in [2, Chapter 1 Exercise 6.3] for integral
domains. However it is also true for any commutative ring and we give a proof
for completeness.

Lemma 3.10. Let R be a ring and I, J ideals of R. Then TorR2 (R/I,R/J) ∼=
Ker(φ), where φ : I⊗J → IJ is an R-homomorphism defined by φ(a⊗ b) = ab.

Proof. Let I and J be ideals of R. Then TorR2 (R/I,R/J) ∼= TorR1 (R/I, J).

Consider the following exact sequence: 0 → TorR1 (R/I, J) → I ⊗R J
φ−→

R ⊗R J , where φ is an R-homomorphism such that φ(a ⊗ b) = ab. We have

TorR2 (R/I,R/J) ∼= Ker(φ). �

Trivially, a ring R with w.gl.dim(R) ≤ 1 has a u-S-weak global dimension at
most one. The following example shows the converse does not hold generally.
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Example 3.11. Let A be a ring with w.gl.dim(A) = 1, T = A× A the direct
product of A. Set s = (1, 0) ∈ T . Then s2 = s. Let R = T [x]/〈sx, x2〉
with x an indeterminate and S = {1, s} be a multiplicative subset of R. Then
u-S-w.gl.dim(R) = 1 but w.gl.dim(R) =∞.

Proof. Since x2 = 0 and sx = 0 in R, every element in R can uniquely be
written as r = (a, b) + (0, c)x where a, b, c ∈ A. Let f : R → A be a ring
homomorphism defined by f((a, b) + (0, c)x) = a. Then f makes A a module
retract of R. Let I and J be ideals of R. Let r1 = (a1, b1) + (0, c1)x and
r2 = (a2, b2) + (0, c2) be elements in I and J , respectively, such that r1 ⊗ r2 ∈
Ker(φ), where φ : I ⊗R J → IJ is the multiplicative homomorphism. Then
r1r2 = (a1a2, b1b2) + (0, b1c2 + b2c1)x = 0, and so a1a2 = 0 in A. By Lemma
3.10, a1 ⊗A a2 = 0 in f(I) ⊗A f(J) since w.gl.dim(A) = 1. Consequently

s2r1⊗Rr2 = sr1⊗Rsr2 = (a1, 0)⊗R(a2, 0) = 0 in I⊗J . So s2TorR2 (R/I,R/J) =
0 by Lemma 3.10. It follows that u-S-w.gl.dim(R) ≤ 1 by Proposition 3.9.
Since RS ∼= A has a weak global dimension 1, u-S-w.gl.dim(R) = 1 by Corollary
3.8 and [7, Corollary 3.14]. Since R is a non-reduced coherent ring, it follows
from [3, Corollary 4.2.4] that w.gl.dim(R) =∞. �

4. U-S-weak global dimensions of factor rings and polynomial rings

In this section, we mainly consider the u-S-weak global dimensions of factor
rings and polynomial rings. Firstly, we give an inequality of u-S-weak global
dimensions for ring homomorphisms. Let θ : R→ T be a ring homomorphism.
Let S be a multiplicative subset of R. Then θ(S) = {θ(s) : s ∈ S} is a
multiplicative subset of T .

Lemma 4.1. Let θ : R → T be a ring homomorphism and S a multiplicative
subset of R. Suppose L is a u-θ(S)-flat T -module. Then for any R-module

X and any n ≥ 0, TorRn (X,L) is u-S-isomorphic to TorRn (X,T )⊗T L. Conse-
quently, u-S-fdR(L) ≤ u-S-fdR(T ).

Proof. If n = 0, then X ⊗R L ∼= X ⊗R (T ⊗T L) ∼= (X ⊗R T )⊗T L.
If n = 1, let 0→ A→ P → X → 0 be an exact sequence of R-modules where

P is free. Thus we have two exact sequences of T -modules: 0→ TorR1 (X,T )→
A ⊗R T → P ⊗R T → X ⊗R T → 0 and 0 → TorR1 (X,L) → A ⊗R L →
P ⊗R L → X ⊗R L → 0. Consider the following commutative diagram with
exact sequence:

0 // 0 //

��

TorR1 (X,L)

h
��

// A⊗R L
∼=
��

// P ⊗R L
∼=
��

0 // Ker(δ) // TorR1 (X,T )⊗T L
δ // (A⊗R T )⊗T L // (P ⊗R T )⊗T L.

Since L is a u-θ(S)-flat T -module, δ is a u-θ(S)-monomorphism. By Theorem
1.2, h is a u-θ(S)-isomorphism over T . So h is a u-S-isomorphism over R since
T -modules are viewed as R-modules through θ. By dimension-shifting, we can
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obtain that TorRn (X,L) is u-S-isomorphic to TorRn (X,T )⊗TL for any R-module
X and any n ≥ 0.

Thus for any R-module X, if TorRn (X,T ) is u-S-torsion, then TorRn (X,L) is
also u-S-torsion. Consequently, u-S-fdR(L) ≤ u-S-fdR(T ). �

Proposition 4.2. Let θ : R→ T be a ring homomorphism and S a multiplica-
tive subset of R. Let M be an T -module. Then

u-S-fdR(M) ≤ u-θ(S)-fdT (M) + u-S-fdR(T ).

Proof. Assume u-θ(S)-fdT (M) = n <∞. If n = 0, then M is u-θ(S)-flat over
T . By Lemma 4.1, u-S-fdR(M) ≤ n+ u-S-fdR(T ).

Now we assume n > 0. Let 0 → A → F → M → 0 be an exact sequence
of T -modules, where F is a free T -module. Then u-θ(S)-fdT (A) = n − 1 by
Corollary 1.5 and Proposition 2.3. By induction, u-S-fdR(A) ≤ n − 1 + u-S-
fdR(T ). Note that u-S-fdR(T ) = u-S-fdR(F ). By Proposition 2.7, we have

u-S-fdR(M) ≤ 1 + max{u-S-fdR(F ), u-S-fdR(A)}
≤ 1 + n− 1 + u-S-fdR(T )

= u-θ(S)-fdT (M) + u-S-fdR(T ). �

Let R be a ring, I an ideal of R and S a multiplicative subset of R. Then
π : R → R/I is a ring epimorphism and π(S) := S = {s+ I ∈ R/I : s ∈ S} is
naturally a multiplicative subset of R/I.

Proposition 4.3. Let R be a ring and S a multiplicative subset of R. Let
a ∈ R be an element such that u-S-fdR(R/aR) = 1. Written R = R/aR and
S = {s+ aR ∈ R : s ∈ S}. Then the following assertions hold.

(1) Let M be a nonzero R-module. If u-S-fdR(M) <∞, then

u-S-fdR(M) = u-S-fdR(M) + 1.

(2) If u-S-w.gl.dim(R) <∞, then

u-S-w.gl.dim(R) ≥ u-S-w.gl.dim(R) + 1.

Proof. (1) Set u-S-fdR(M) = n. By Proposition 4.2, we have u-S-fdR(M) ≤
u-S-fdR(M) + 1 = n + 1. Since u-S-fdR(M) = n, then there is an injective

R-module C such that TorRn (M,C) is not u-S-torsion. By [5, Theorem 2.4.22],
there is an injective R-module E such that 0→ C → E → E → 0 is exact. By

[5, Proposition 3.8.12(4)], TorRn+1(M,E) ∼= TorRn (M,C). Thus TorRn+1(M,E)

is not u-S-torsion. So u-S-fdR(M) = u-S-fdR(M) + 1.

(2) Let n = u-S-w.gl.dim(R). Then there is a nonzero R-module M such
that u-S-fdR(M) = n. Thus u-S-fdR(M) = n+ 1 by (1). So u-S-w.gl.dim(R)

≥ u-S-w.gl.dim(R) + 1. �

Let R be a ring and M an R-module. Denote by R[x] the polynomial ring
with one indeterminate, where all coefficients are in R. Set M [x] = M ⊗R
R[x]. Then M [x] can be seen as an R[x]-module naturally. It is well-known
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w.gl.dim(R[x]) =w.gl.dim(R) (see [5, Theorem 3.8.23]). In this section, we give
a u-S-analogue of this result. Let S be a multiplicative subset of R. Then S is
a multiplicative subset of R[x] naturally.

Lemma 4.4. Let R be a ring and S a multiplicative subset of R. Let T be an
R-module and F an R[x]-module. Then the following assertions hold.

(1) T is u-S-torsion over R if and only if T [x] is a u-S-torsion R[x]-
module.

(2) If F is u-S-flat over R[x], then F is u-S-flat over R.

Proof. (1) If sT [x] = 0 for some s ∈ S, then trivially sT = 0. So T is u-S-
torsion over R. Suppose sT = 0 for some s ∈ S. Then sT [x] ∼= (sT )[x] = 0.
Thus T [x] is a u-S-torsion R[x]-module.

(2) Suppose F is a u-S-flat R[x]-module. By [3, Theorem 1.3.11],

TorR1 (F,L)[x] ∼= Tor
R[x]
1 (F [x], L[x])

is u-S-torsion. Thus there exists an element s ∈ S such that sTorR1 (F,L)[x] = 0.

So sTorR1 (F,L) = 0. It follows that F is a u-S-flat R-module. �

Proposition 4.5. Let R be a ring, S a multiplicative subset of R and M an
R-module. Then u-S-fdR[x](M [x]) = u-S-fdR(M).

Proof. Assume that u-S-fdR(M) ≤ n. Then TorRn+1(M,N) is u-S-torsion for
any R-module N by Proposition 2.3. Thus for any R[x]-module L,

Tor
R[x]
n+1(M [x], L) ∼= TorRn+1(M,L)

is u-S-torsion for any R[x]-module L by [3, Theorem 1.3.11]. Consequently,
u-S-fdR[x](M [x]) ≤ n by Proposition 2.3.

Let 0 → Fn → · · · → F1 → F0 → M [x] → 0 be an exact sequence with
each Fi u-S-flat over R[x] (1 ≤ i ≤ n). Then it is also a u-S-flat resolu-

tion of M [x] over R by Lemma 4.4. Thus TorRn+1(M [x], N) is u-S-torsion

for any R-module N by Proposition 2.3. It follows that sTorRn+1(M [x], N) =

s
∞⊕
i=1

TorRn+1(M,N) = 0. Thus TorRn+1(M,N) is u-S-torsion. Consequently,

u-S-fdR(M) ≤ u-S-fdR[x](M [x]) by Proposition 2.3 again. �

Let M be an R[x]-module. Then M can be naturally viewed as an R-module.
Define ψ : M [x]→M by

ψ(

n∑
i=0

xi ⊗mi) =

n∑
i=0

ximi, mi ∈M.

And define ϕ : M [x]→M [x] by

ϕ(

n∑
i=0

xi ⊗mi) =

n∑
i=0

xi+1 ⊗mi −
n∑
i=0

xi ⊗ xmi, mi ∈M.
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Lemma 4.6 ([5, Theorem 3.8.22]). Let R be a ring. For any R[x]-module M ,

0→M [x]
ϕ−→M [x]

ψ−→M → 0

is exact.

Theorem 4.7. Let R be a ring and S a multiplicative subset of R satisfying
u-S-fdR[x](R) = 1. Then u-S-w.gl.dim(R[x]) = u-S-w.gl.dim(R) + 1.

Proof. Let M be an R[x]-module. Then, by Lemma 4.6, there is an exact
sequence over R[x]:

0→M [x]→M [x]→M → 0.

By Proposition 2.7 and Proposition 4.5,

(∗) u-S-fdR(M)≤u-S-fdR[x](M)≤1+u-S-fdR[x](M [x])=1+u-S-fdR(M).

Thus if u-S-w.gl.dim(R) <∞, then u-S-w.gl.dim(R[x]) <∞.
Conversely, if u-S-w.gl.dim(R[x]) < ∞, then for any R-module M , u-S-

fdR(M) = u-S-fdR[x](M [x]) <∞ by Proposition 4.5. Therefore we have u-S-
w.gl.dim(R) <∞ if and only if u-S-w.gl.dim(R[x]) <∞. Now we assume that
both of these are finite. Then u-S-w.gl.dim(R[x]) ≤ u-S-w.gl.dim(R) + 1 by
(∗). Since R ∼= R[x]/xR[x] and u-S-fdR[x](R[x]/xR[x]) = u-S-fdR[x](R) = 1,
u-S-w.gl.dim(R[x]) ≥ u-S-w.gl.dim(R) + 1 by Proposition 4.3. Consequently,
we have u-S-w.gl.dim(R[x]) = u-S-w.gl.dim(R) + 1. �

Remark 4.8. Remark that u-S-fdR[x](R) = 1 in the following cases.

(1) S = U(R) is consist of units.
(2) R = R1 ×R2 and S = U(R1)× 0.

We also remark that u-S-w.gl.dim(R[x]) may not be equal to u-S-w.gl.dim(R)+
1 in general. For example, let S be a multiplicative subset of R that contains
0. Then u-S-w.gl.dim(R) = u-S-w.gl.dim(R[x]) = 0.
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