Commun. Korean Math. Soc. **38** (2023), No. 1, pp. 97–112 https://doi.org/10.4134/CKMS.c220016 pISSN: 1225-1763 / eISSN: 2234-3024

THE *u-S*-WEAK GLOBAL DIMENSIONS OF COMMUTATIVE RINGS

XIAOLEI ZHANG

ABSTRACT. In this paper, we introduce and study the u-S-weak global dimension u-S-w.gl.dim(R) of a commutative ring R for some multiplicative subset S of R. Moreover, the u-S-weak global dimensions of factor rings and polynomial rings are investigated.

Throughout this article, R is always a commutative ring with identity 1 and S is always a multiplicative subset of R, that is, $1 \in S$ and $s_1 s_2 \in S$ for any $s_1 \in S, s_2 \in S$. We denote by U(R) the set of all units in R. In 2002, Anderson and Dumitrescu [1] defined an S-Noetherian ring R for which any ideal of R is S-finite. Recall from [1] that an R-module M is called S-finite provided that $sM \subseteq F$ for some $s \in S$ and some finitely generated submodule F of M. An *R*-module T is called u-S-torsion if sT = 0 for some $s \in S$ (see [7]). So an *R*-module *M* is *S*-finite if and only if M/F is *u*-*S*-torsion for some finitely generated submodule F of M. The idea derived from u-S-torsion modules is deserved to be further investigated. In [7], the author of this paper introduced the class of u-S-flat modules F for which the functor $F \otimes_R -$ preserves u-Sexact sequences. The class of u-S-flat modules can be seen as a "uniform" generalization of that of flat modules, since an R-module F is u-S-flat if and only if $\operatorname{Tor}_1^R(F, M)$ is *u-S*-torsion for any *R*-module *M* (see [7, Theorem 3.2]). The class of *u-S*-flat modules owns the following *u-S*-hereditary property: let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a *u-S*-exact sequence, if B and C are *u-S*-flat so is A (see [7, Proposition 3.4]). So it is worth to study the u-S-analogue of flat dimensions of R-modules and the u-S-analogue of a weak global dimension of commutative rings.

In this article, we define the u-S-flat dimension u-S- $fd_R(M)$ of an R-module M to be the length of the shortest u-S-flat u-S-resolution of M. We characterize u-S-flat dimensions of R-modules using the uniform torsion property of the "Tor" functors in Proposition 3.2. Besides, we obtain a new local characterization of flat dimensions of R-modules (see Corollary 3.7). The u-S-weak

©2023 Korean Mathematical Society

Received January 25, 2022; Accepted May 25, 2022.

²⁰²⁰ Mathematics Subject Classification. 13D05, 13D07, 13B25.

Key words and phrases. u-S-flat module, u-S-flat dimension, u-S-weak global dimension, polynomial ring.

⁹⁷

X. ZHANG

global dimension u-S-w.gl.dim(R) of a commutative ring R is defined to be the supremum of u-S-flat dimensions of all R-modules. A characterization of u-S-weak global dimensions is given in Proposition 3.2. Examples of rings R for which u-S-w.gl.dim $(R) \neq$ w.gl.dim (R_S) can be found in Example 3.11. U-S-von Neumann regular rings are firstly introduced in [7] for which there exist $s \in S$ and $r \in R$ such that $sa = ra^2$ for any $a \in R$. By [7, Theorem 3.11], a ring R is u-S-von Neumann regular rings are exactly commutative rings with u-S-weak global dimensions equal to 0 (see Corollary 3.8). We also study commutative rings R with u-S-w.gl.dim(R) at most 1. The nontrivial example of a commutative ring R with u-S-w.gl.dim $(R) \leq 1$ but an infinite weak global dimension is given in Example 3.11. In the final section, we investigate the u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimension factor rings and polynomial rings and show that u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimensions of factor rings and polynomial rings and show that u-S-weak global dimensions polynomial rings and

1. Preliminaries

Recall from [7] that an *R*-module *T* is called a *u-S*-torsion module provided that there exists an element $s \in S$ such that sT = 0. An *R*-sequence $M \xrightarrow{f} N \xrightarrow{g} L$ is called *u-S*-exact (at *N*) provided that there is an element $s \in S$ such that $s\operatorname{Ker}(g) \subseteq \operatorname{Im}(f)$ and $s\operatorname{Im}(f) \subseteq \operatorname{Ker}(g)$. We say a long *R*-sequence $\cdots \rightarrow A_{n-1} \xrightarrow{f_n} A_n \xrightarrow{f_{n+1}} A_{n+1} \rightarrow \cdots$ is *u-S*-exact, if for any *n* there is an element $s \in S$ such that $s\operatorname{Ker}(f_{n+1}) \subseteq \operatorname{Im}(f_n)$ and $s\operatorname{Im}(f_n) \subseteq \operatorname{Ker}(f_{n+1})$. A *u-S*-exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is called a short *u-S*-exact sequence. An *R*homomorphism $f: M \rightarrow N$ is a *u-S*-monomorphism (resp., *u-S*-epimorphism, u-*S*-isomorphism) provided $0 \rightarrow M \xrightarrow{f} N$ (resp., $M \xrightarrow{f} N \rightarrow 0$, $0 \rightarrow M \xrightarrow{f} N$ $N \rightarrow 0$) is *u*-*S*-exact. It is easy to verify an *R*-homomorphism $f: M \rightarrow N$ is a *u*-*S*-monomorphism (resp., *u*-*S*-epimorphism, *u*-*S*-isomorphism) if and only if Ker(f) (resp., Coker(f), both Ker(f) and Coker(f)) is a *u*-*S*-torsion module.

Proposition 1.1 ([6, Lemma 2.1]). Let R be a ring and S a multiplicative subset of R. Suppose there is a u-S-isomorphism $f: M \to N$ for R-modules M and N. Then there is a u-S-isomorphism $g: N \to M$. Moreover, there is $t \in S$ such that $f \circ g = tId_N$ and $g \circ f = tId_M$.

Let R be a ring and S a multiplicative subset of R. Let M and N be R-modules. We say M is u-S-isomorphic to N if there exists a u-S-isomorphism $f : M \to N$. A family C of R-modules is said to be closed under u-S-isomorphisms if M is u-S-isomorphic to N and M is in C, then N is also in C. It follows from Proposition 1.1 that the existence of u-S-isomorphisms of two R-modules is an equivalence relation. Next, we give a u-S-analogue of the Five Lemma.

Theorem 1.2 (u-S-analogue of Five Lemma). Let R be a ring and S a multiplicative subset of R. Consider the following commutative diagram with u-S-exact rows:

$$A \xrightarrow{g_1} B \xrightarrow{g_2} C \xrightarrow{g_3} D \xrightarrow{g_4} E$$

$$f_A \downarrow f_B \downarrow \downarrow f_C \downarrow f_D \downarrow f_E$$

$$A' \xrightarrow{h_1} B' \xrightarrow{h_2} C' \xrightarrow{h_3} D' \xrightarrow{h_4} E'.$$

- (1) If f_B and f_D are u-S-monomorphisms and f_A is a u-S-epimorphism, then f_C is a u-S-monomorphism.
- (2) If f_B and f_D are u-S-epimorphisms and f_E is a u-S-monomorphism, then f_C is a u-S-epimorphism.
- (3) If f_A is a u-S-epimorphism, f_E is a u-S-monomorphism, and f_B and f_D are u-S-isomorphisms, then f_C is a u-S-isomorphism.
- (4) If f_A , f_B , f_D and f_E are all u-S-isomorphisms, then f_C is a u-S-isomorphism.

Proof. (1) Let $x \in \operatorname{Ker}(f_C)$. Then $f_Dg_3(x) = h_3f_C(x) = 0$. Since f_D is a u-S-monomorphism, $s_1\operatorname{Ker}(f_D) = 0$ for some $s_1 \in S$. So $s_1g_3(x) = g_3(s_1x) = 0$. Since the top row is u-S-exact, there exists $s_2 \in S$ such that $s_2\operatorname{Ker}(g_3) \subseteq \operatorname{Im}(g_2)$. Thus there exists $b \in B$ such that $g_2(b) = s_2s_1x$. Hence $h_2f_B(b) = f_Cg_2(b) = f_C(s_2s_1x) = 0$. Thus there exists $s_3 \in S$ such that $s_3\operatorname{Ker}(h_2) \subseteq \operatorname{Im}(h_1)$. So there exists $a' \in A'$ such that $h_1(a') = s_2f_B(b)$. Since f_A is a u-S-epimorphism, there exists $s_4 \in S$ such that $s_4A' \subseteq \operatorname{Im}(f_A)$. So there exists $a \in A$ such that $s_4a' = f_A(a)$. Hence $s_4s_2f_B(b) = s_4h_1(a') = h_1(f_A(a)) = f_B(g_1(a))$. So $s_4s_2b - g_1(a) \in \operatorname{Ker}(f_B) = 0$. Thus $s_5(s_4s_2b - g_1(a)) = 0$. So $s_5s_4s_2s_2s_1x = s_5(g_2(s_4s_2b)) = s_5g_2(g_1(a))$. Since the top row is u-S-exact at B, there exists $s_6 \in S$ such that $s_6\operatorname{Im}(g_1) \subseteq \operatorname{Ker}(g_2)$. So $s_6s_5s_4s_2s_2s_1x = s_5g_2(s_6g_1(a)) = 0$. Consequently, if we set $s = s_6s_5s_4s_2s_2s_1$, then $s\operatorname{Ker}(f_C) = 0$. It follows that f_C is a u-S-monomorphism.

(2) Let $x \in C'$. Since f_D is a *u*-S-epimorphism, there exists $s_1 \in S$ such that $s_1D' \subseteq \operatorname{Im}(f_D)$. Thus there exists $d \in D$ such that $f_D(d) = s_1h_3(x)$. By the commutativity of the right square, we have $f_Eg_4(d) = h_4f_D(d) = s_1h_4(h_3(x))$. Since the bottom row is *u*-S-exact at D', there exists $s_2 \in S$ such that $s_4\operatorname{Im}(h_3) \subseteq \operatorname{Ker}(h_4)$. So $s_4f_E(g_4(d)) = s_1h_4(s_4h_3(x)) = 0$. Since f_E is a *u*-S-monomorphism, there exists $s_3 \in S$ such that $s_3\operatorname{Ker}(f_E) = 0$. Thus $s_3s_4g_4(d) = 0$. Since the top row is *u*-S-exact at D, there there exists $s_5 \in S$ such that $s_5\operatorname{Ker}(g_4) \subseteq \operatorname{Im}(g_3)$. So there exists $c \in C$ such that $s_5s_3s_4d = g_3(c)$. Hence $s_5s_3s_4f_D(d) = f_D(g_3(c)) = h_3(f_C(c))$. Since $s_5s_3s_4f_D(d) = h_3(s_1s_5s_3s_4x)$, we have $f_C(c) - s_1s_5s_3s_4x \in \operatorname{Ker}(h_3) \subseteq \operatorname{Im}(h_2)$. Thus there exists $b' \in B'$ such that $s_6(f_C(c) - s_1s_5s_3s_4x) = h_2(b')$. Since f_B is a *u*-S-epimorphism, there exists $s_7 \in S$ such that $s_7B' \subseteq \operatorname{Im}(f_B)$. So $s_7b' = f_B(b)$ for some $b \in B$. Thus $f_C(g_2(b)) = h_2(f_B(b)) = s_7h_2(b') = s_7(s_6(f_C(c) - s_1s_5s_3s_4))$. $s_1s_5s_3s_4x$). So $s_7s_6s_1s_5s_3s_4x = s_7s_6f_C(c) - f_C(g_2(b)) = f_C(s_7s_6c - g_2(b)) \in$ $\operatorname{Im}(f_C)$. Consequently, if we set $s = s_7 s_6 s_1 s_5 s_3 s_4$, then $sC' \subseteq \operatorname{Im}(f_C)$. It follows that f_C is a *u*-S-epimorphism.

It is easy to see (3) follows from (1) and (2), while (4) follows from (3). \Box

Recall from [7, Definition 3.1] that an R-module F is called u-S-flat provided that for any u-S-exact sequence $0 \to A \to B \to C \to 0$, the induced sequence $0 \to A \otimes_R F \to B \otimes_R F \to C \otimes_R F \to 0$ is u-S-exact. It is easy to verify that the class of u-S-flat modules is closed under u-S-isomorphisms by the following result.

Lemma 1.3 ([7, Theorem 3.2]). Let R be a ring, S a multiplicative subset of R and F an R-module. The following assertions are equivalent:

- (1) F is u-S-flat;
- (2) for any short exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$, the induced sequence $0 \to A \otimes_R F \xrightarrow{f \otimes_R F} B \otimes_R F \xrightarrow{g \otimes_R F} C \otimes_R F \to 0$ is u-S-exact; (3) $\operatorname{Tor}_1^R(M,F)$ is u-S-torsion for any R-module M;
- (4) $\operatorname{Tor}_{n}^{R}(M, F)$ is u-S-torsion for any R-module M and $n \geq 1$.

The following result says that a short u-S-exact sequence induces a long u-S-exact sequence by the functor "Tor" as the classical case.

Theorem 1.4. Let R be a ring, S a multiplicative subset of R and N an *R*-module. Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be a u-S-exact sequence of Rmodules. Then for any $n \geq 1$ there is an R-homomorphism $\delta_n : \operatorname{Tor}_n^R(C, N) \to$ $\operatorname{Tor}_{n-1}^{R}(A, N)$ such that the induced sequence

$$\cdots \to \operatorname{Tor}_n^R(A,N) \to \operatorname{Tor}_n^R(B,N) \to \operatorname{Tor}_n^R(C,N) \xrightarrow{\delta_n} \operatorname{Tor}_{n-1}^R(A,N) \to$$

 $\operatorname{Tor}_{n-1}^{R}(B,N) \to \dots \to \operatorname{Tor}_{1}^{R}(C,N) \xrightarrow{\delta_{1}} A \otimes_{R} N \to B \otimes_{R} N \to C \otimes_{R} N \to 0$ is u-S-exact.

Proof. Since the sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is *u-S*-exact at *B*, there are three exact sequences $0 \to \operatorname{Ker}(f) \xrightarrow{i_{\operatorname{Ker}(f)}} A \xrightarrow{\pi_{\operatorname{Im}(f)}} \operatorname{Im}(f) \to 0, 0 \to$ $\operatorname{Ker}(g) \xrightarrow{i_{\operatorname{Ker}(g)}} B \xrightarrow{\pi_{\operatorname{Im}(g)}} \operatorname{Im}(g) \to 0 \text{ and } 0 \to \operatorname{Im}(g) \xrightarrow{i_{\operatorname{Im}(g)}} C \xrightarrow{\pi_{\operatorname{Coker}(g)}} C$ $\operatorname{Coker}(g) \to 0$ with $\operatorname{Ker}(f)$ and $\operatorname{Coker}(g)$ u-S-torsion. There also exists $s \in S$ such that $s\operatorname{Ker}(g) \subseteq \operatorname{Im}(f)$ and $s\operatorname{Im}(f) \subseteq \operatorname{Ker}(g)$. Denote $T = \operatorname{Ker}(f)$ and $T' = \operatorname{Coker}(q).$

Firstly, consider the exact sequence

$$\operatorname{Tor}_{n+1}^{R}(T',N) \to \operatorname{Tor}_{n}^{R}(\operatorname{Im}(g),N) \xrightarrow{\operatorname{Tor}_{n}^{R}(i_{\operatorname{Im}(g)},N)} \operatorname{Tor}_{n}^{R}(C,N) \to \operatorname{Tor}_{n}^{R}(T',N).$$

Since T' is u-S-torsion, $\operatorname{Tor}_{n+1}^R(T', N)$ and $\operatorname{Tor}_n^R(T', N)$ are u-S-torsion. Thus $\operatorname{Tor}_{n}^{R}(i_{\operatorname{Im}(q)}, N)$ is a *u-S*-isomorphism. So there is also a *u-S*-isomorphism

 $h^n_{\mathrm{Im}(g)}: \mathrm{Tor}^R_n(C,N) \to \mathrm{Tor}^R_n(\mathrm{Im}(g),N)$ by Proposition 1.1. Consider the exact sequence:

$$\operatorname{Tor}_{n+1}^{R}(T_{1},N) \to \operatorname{Tor}_{n}^{R}(s\operatorname{Ker}(g),N) \xrightarrow{\operatorname{Tor}_{n}^{*}(i_{s\operatorname{Ker}(g)}^{*},N)} \operatorname{Tor}_{n}^{R}(\operatorname{Im}(f),N) \to \operatorname{Tor}_{n+1}^{R}(T_{1},N)$$

and

$$\begin{split} &\operatorname{Tor}_{n+1}^R(T_2,N)\to\operatorname{Tor}_n^R(s\operatorname{Ker}(g),N)\xrightarrow{\operatorname{Tor}_n^R(i_{s\operatorname{Ker}(g)}^2,N)}\operatorname{Tor}_n^R(\operatorname{Ker}(g),N)\to\operatorname{Tor}_{n+1}^R(T_2,N),\\ &\text{where }T_1\ =\ \operatorname{Im}(f)/s\operatorname{Ker}(g)\ \text{and }T_2\ =\ \operatorname{Im}(f)/s\operatorname{Im}(f)\ \text{are }u\text{-}S\text{-}\mathrm{torsion}. \quad \text{So}\\ &\operatorname{Tor}_n^R(i_{s\operatorname{Ker}(g)}^1,N)\ \text{and }\operatorname{Tor}_n^R(i_{s\operatorname{Ker}(g)}^2,N)\ \text{are }u\text{-}S\text{-}\mathrm{isomorphisms}. \ \text{Thus there is a}\\ &u\text{-}S\text{-}\mathrm{isomorphism}\ h_{s\operatorname{Ker}(g)}^n\ :\ \operatorname{Tor}_n^R(\operatorname{Ker}(g),N)\to\operatorname{Tor}_n^R(s\operatorname{Ker}(g),N). \ \text{Note that}\\ &\text{there is an exact sequence }\operatorname{Tor}_n^R(B,N)\xrightarrow{\operatorname{Tor}_n^R(\pi_{\operatorname{Im}(g)},N)}\operatorname{Tor}_n^R(\operatorname{Im}(g),N)\xrightarrow{\delta_{\operatorname{Im}(g)}^n}\to\\ &\operatorname{Tor}_{n-1}^R(\operatorname{Ker}(g),N)\xrightarrow{\operatorname{Tor}_{n-1}^R(i_{\operatorname{Ker}(g),N)}}\operatorname{Tor}_{n-1}^R(B,N). \ \text{Set }\delta_n\ =\ h_{\operatorname{Im}(g)}^n\circ\delta_{\operatorname{Im}(g)}^n\circ\\ &h_{s\operatorname{Ker}(g)}^n\circ\operatorname{Tor}_n^R(i_{s\operatorname{Ker}(g)}^1,N)\circ h_{\operatorname{Im}(f)}^{n-1}\ :\ \operatorname{Tor}_n^R(C,N)\to\operatorname{Tor}_{n-1}^R(A,N). \ \text{Since}\\ &h_{\operatorname{Im}(g)}^n,\delta_{\operatorname{Im}(g)}^n,h_{s\operatorname{Ker}(g)}^n\ \text{and }h_{\operatorname{Im}(f)}^{n-1}\ \text{are }u\text{-}S\text{-}\mathrm{isomorphisms},\ \text{we have the sequence}\\ &\operatorname{Tor}_n^R(B,N)\to\operatorname{Tor}_n^R(C,N)\xrightarrow{\delta^n}\operatorname{Tor}_{n-1}^R(A,N)\to\operatorname{Tor}_{n-1}^R(B,N)\ \text{is }u\text{-}S\text{-}\mathrm{exact}.\\ &\operatorname{Secondly,\ consider\ the\ exact\ sequence:} \end{split}$$

$$\operatorname{Tor}_{n+1}^{R}(T,N) \to \operatorname{Tor}_{n}^{R}(A,N) \xrightarrow{\operatorname{Tor}_{n}^{R}(i_{\operatorname{Im}(f)},N)} \operatorname{Tor}_{n}^{R}(\operatorname{Im}(f),N) \to \operatorname{Tor}_{n}^{R}(T,N).$$

Since T is u-S-torsion, $\operatorname{Tor}_{n}^{R}(i_{\operatorname{Im}(f)}, N)$ is a u-S-isomorphism. Consider the exact sequences:

 $\operatorname{Tor}_{n+1}^{R}(\operatorname{Im}(g), N) \to \operatorname{Tor}_{n}^{R}(\operatorname{Ker}(g), N) \xrightarrow{\operatorname{Tor}_{n}^{R}(i_{\operatorname{Ker}(g)}, N)} \operatorname{Tor}_{n}^{R}(B, N) \to \operatorname{Tor}_{n}^{R}(\operatorname{Im}(g), N)$ and

$$\operatorname{Tor}_{n+1}^{R}(T',N) \to \operatorname{Tor}_{n}^{R}(\operatorname{Im}(g),N) \xrightarrow{\operatorname{Tor}_{n}^{R}(i_{\operatorname{Im}(g)},N)} \operatorname{Tor}_{n}^{R}(C,N) \to \operatorname{Tor}_{n}^{R}(T',N).$$

Since T' is *u-S*-torsion, we have $\operatorname{Tor}_n^R(i_{\operatorname{Im}(g)}, N)$ is a *u-S*-isomorphism. Since $\operatorname{Tor}_n^R(i_{s\operatorname{Ker}(g)}^1, N)$ and $\operatorname{Tor}_n^R(i_{s\operatorname{Ker}(g)}^2, N)$ are *u-S*-isomorphisms as above,

$$\operatorname{Tor}_n^R(A,N) \to \operatorname{Tor}_n^R(B,N) \to \operatorname{Tor}_n^R(C,N)$$

is *u-S*-exact at $\operatorname{Tor}_{n}^{R}(B, N)$.

Continue by the above method, we have a u-S-exact sequence:

$$\cdots \to \operatorname{Tor}_{n}^{R}(A, N) \to \operatorname{Tor}_{n}^{R}(B, N) \to \operatorname{Tor}_{n}^{R}(C, N) \xrightarrow{\delta_{n}} \operatorname{Tor}_{n-1}^{R}(A, N) \to$$

$$\operatorname{Tor}_{n-1}^{n}(B,N) \to \dots \to \operatorname{Tor}_{1}^{n}(C,N) \xrightarrow{\circ_{1}} A \otimes_{R} N \to B \otimes_{R} N \to C \otimes_{R} N \to 0.$$

X. ZHANG

Corollary 1.5. Let R be a ring, S a multiplicative subset of R and N an Rmodule. Suppose $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is a u-S-exact sequence of R-modules where B is u-S-flat. Then $\operatorname{Tor}_{n+1}^{R}(C,N)$ is u-S-isomorphic to $\operatorname{Tor}_{n}^{R}(A,N)$ for any $n \geq 0$. Consequently, $\operatorname{Tor}_{n+1}^{R}(C, N)$ is u-S-torsion if and only if $\operatorname{Tor}_{n}^{R}(A, N)$ is u-S-torsion for any $n \geq 0$.

Proof. It follows from Lemma 1.3 and Theorem 1.4.

2. On the *u*-S-flat dimensions of modules

Let R be a ring. The flat dimension of an R-module M is defined as the shortest flat resolution of M. We now introduce the notion of a u-S-flat dimension of an R-module as follows.

Definition 2.1. Let R be a ring, S a multiplicative subset of R and M an *R*-module. We write u-S-fd_R(M) $\leq n$ (u-S-fd abbreviates a uniformly S-flat dimension) if there exists a u-S-exact sequence of R-modules

$$(\diamondsuit) \qquad \qquad 0 \to F_n \to \dots \to F_1 \to F_0 \to M \to 0$$

where each F_i is *u*-S-flat for i = 0, ..., n. The *u*-S-exact sequence (\diamondsuit) is said to be a u-S-flat u-S-resolution of length n of M. If such a finite u-S-flat u-S-resolution does not exist, then we say u-S- $fd_R(M) = \infty$; otherwise, define $u-S-fd_R(M) = n$ if n is the length of the shortest u-S-flat u-S-resolution of M.

Trivially, the u-S-flat dimension of an R-module M cannot exceed its flat dimension for any multiplicative subset S of R. And if S is composed of units, then u-S- $fd_R(M) = fd_R(M)$. It is also obvious that an R-module M is u-S-flat if and only if u-S- $fd_R(M) = 0$.

Lemma 2.2. Let R be a ring and S a multiplicative subset of R. If A is u-S-isomorphic to B, then u-S- $fd_R(A) = u$ -S- $fd_R(B)$.

Proof. Let $f: A \to B$ be a *u-S*-isomorphism. If $\dots \to F_n \to \dots \to F_1 \to F_0 \xrightarrow{g} f$ $A \to 0$ is a *u-S*-resolution of A, then $\dots \to F_n \to \dots \to F_1 \to F_0 \xrightarrow{f \circ g} B \to 0$ is a u-S-resolution of B. So u-S- $fd_R(A) \ge u$ -S- $fd_R(B)$. Note that there is a u-S-isomorphism $q: B \to A$ by Proposition 1.1. Similarly we have u-S $fd_R(B) \ge u$ -S- $fd_R(A)$.

Proposition 2.3. Let R be a ring and S a multiplicative subset of R. The following statements are equivalent for an R-module M:

- (1) u-S- $fd_R(M) < n$;
- (2) $\operatorname{Tor}_{n+k}^{R}(M, N)$ is u-S-torsion for all R-modules N and all k > 0; (3) $\operatorname{Tor}_{n+1}^{R}(M, N)$ is u-S-torsion for all R-modules N;
- (4) there exists $s \in S$ such that $s \operatorname{Tor}_{n+1}^{R}(M, R/I) = 0$ for all ideals I of R;
- (5) if $0 \to F_n \to \cdots \to F_1 \to F_0 \to M \to 0$ is a u-S-exact sequence, where $F_0, F_1, \ldots, F_{n-1}$ are u-S-flat R-modules, then F_n is u-S-flat;

- (6) if $0 \to F_n \to \cdots \to F_1 \to F_0 \to M \to 0$ is a u-S-exact sequence, where $F_0, F_1, \ldots, F_{n-1}$ are flat R-modules, then F_n is u-S-flat;
- (7) if $0 \to F_n \to \cdots \to F_1 \to F_0 \to M \to 0$ is an exact sequence, where $F_0, F_1, \ldots, F_{n-1}$ are u-S-flat R-modules, then F_n is u-S-flat;
- (8) if $0 \to F_n \to \cdots \to F_1 \to F_0 \to M \to 0$ is an exact sequence, where $F_0, F_1, \ldots, F_{n-1}$ are flat *R*-modules, then F_n is u-S-flat;
- (9) there exists a u-S-exact sequence $0 \to F_n \to \cdots \to F_1 \to F_0 \to M \to 0$, where $F_0, F_1, \ldots, F_{n-1}$ are flat R-modules and F_n is u-S-flat;
- (10) there exists an exact sequence $0 \to F_n \to \cdots \to F_1 \to F_0 \to M \to 0$, where $F_0, F_1, \ldots, F_{n-1}$ are flat *R*-modules and F_n is u-S-flat;
- (11) there exists an exact sequence $0 \to F_n \to \cdots \to F_1 \to F_0 \to M \to 0$, where F_0, F_1, \ldots, F_n are u-S-flat R-modules.

Proof. (1) ⇒ (2): We prove (2) by induction on *n*. For the case n = 0, we have M is *u*-*S*-flat, and then (2) holds by [7, Theorem 3.2]. If n > 0, then there is a *u*-*S*-exact sequence $0 \to F_n \to \cdots \to F_1 \to F_0 \to M \to 0$, where each F_i is *u*-*S*-flat for i = 0, ..., n. Set $K_0 = \text{Ker}(F_0 \to M)$ and $L_0 = \text{Im}(F_1 \to F_0)$. Then both $0 \to K_0 \to F_0 \to M \to 0$ and $0 \to F_n \to F_{n-1} \to \cdots \to F_1 \to L_0 \to 0$ are *u*-*S*-exact. Since *u*-*S*-*fd*_{*R*}(L_0) ≤ n - 1 and L_0 is *u*-*S*-isomorphic to K_0 , *u*-*S*-*fd*_{*R*}(K_0) ≤ n - 1 by Lemma 2.2. By induction, $\text{Tor}_{n-1+k}^R(K_0, N)$ is *u*-*S*-torsion for all *u*-*S*-torsion *R*-modules *N* and all k > 0. It follows from Corollary 1.5 that $\text{Tor}_{n+k}^R(M, N)$ is *u*-*S*-torsion.

 $(2) \Rightarrow (3), (5) \Rightarrow (6) \Rightarrow (8) \text{ and } (5) \Rightarrow (7) \Rightarrow (8)$: Trivial.

 $(3) \Rightarrow (4)$: Let $N = \bigoplus_{I \leq R} R/I$. Then there exists an element $s \in S$ such that $s \operatorname{Tor}_{n+1}^R(M, N) = 0$. So $s \bigoplus_{I \leq R} \operatorname{Tor}_{n+1}^R(M, R/I) = 0$. It follows that $s \operatorname{Tor}_{n+1}^R(M, R/I) = 0$ for all ideals I of R.

(4) \Rightarrow (3): Let N be generated by $\{n_i : i \in \Gamma\}$. Set $N_0 = 0$ and $N_\alpha = \langle n_i : i < \alpha \rangle$ for each $\alpha \leq \Gamma$. Then N has a continuous filtration $\{N_\alpha : \alpha \leq \Gamma\}$ with $N_{\alpha+1}/N_\alpha \cong R/I_{\alpha+1}$ and $I_\alpha = \operatorname{Ann}_R(n_\alpha + N_\alpha \cap Rn_\alpha)$. Since $s\operatorname{Tor}_{n+1}^R(M, R/I_\alpha) = 0$ for each $\alpha \leq \Gamma$, it is easy to verify $s\operatorname{Tor}_{n+1}^R(M, N_\alpha) = 0$ by transfinite induction on α . So $s\operatorname{Tor}_{n+1}^R(M, N) = 0$.

 $(3) \Rightarrow (5): \text{ Let } 0 \to F_n \xrightarrow{d_n} F_{n-1} \xrightarrow{d_{n-1}} F_{n-2} \to \cdots \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{d_0} M \to 0 \text{ be a } u\text{-}S\text{-exact sequence, where } F_0, F_1, \ldots, F_{n-1} \text{ are } u\text{-}S\text{-flat. Then } F_n \text{ is } u\text{-}S\text{-flat if and only if } \operatorname{Tor}_1^R(F_n, N) \text{ is } u\text{-}S\text{-torsion for all } R\text{-modules } N, \text{ if and only if } \operatorname{Tor}_2^R(\operatorname{Im}(d_{n-1}), N) \text{ is } u\text{-}S\text{-flat if and only if } \operatorname{Tor}_{n+1}^R(M, N) \text{ is } u\text{-}S\text{-flat if and only if } \operatorname{Tor}_{n+1}^R(M, N) \text{ is } u\text{-}S\text{-torsion for all } R\text{-modules } N.$

 $(10) \Rightarrow (11) \Rightarrow (1)$ and $(10) \Rightarrow (9) \Rightarrow (1)$: Trivial.

(8) \Rightarrow (10): Let $\dots \rightarrow P_n \rightarrow P_{n-1} \xrightarrow{d_{n-1}} P_{n-2} \rightarrow \dots \rightarrow P_0 \rightarrow M \rightarrow 0$ be a projective resolution of M. Set $F_n = \operatorname{Ker}(d_{n-1})$. Then we have an exact sequence $0 \rightarrow F_n \rightarrow P_{n-1} \xrightarrow{d_{n-1}} P_{n-2} \rightarrow \dots \rightarrow P_0 \rightarrow M \rightarrow 0$. By (8), F_n is u-S-flat. So (10) holds. **Corollary 2.4.** Let R be a ring and $S' \subseteq S$ multiplicative subsets of R. Let M be an R-module. Then u-S-fd_R(M) $\leq S'$ -fd_R(M).

Proof. Let N be an R-module. If $\operatorname{Tor}_{n+1}^{R}(M, N)$ is uniformly S'-torsion, then $\operatorname{Tor}_{n+1}^{R}(M, N)$ is u-S-torsion. The result follows by Proposition 2.3.

Let R be a ring, S a multiplicative subset of R and M an R-module. For any $s \in S$, we denote by R_s the localization of R at $\{s^n : n \ge 0\}$ and denote $M_s = M \otimes_R R_s$ as an R_s -module.

Corollary 2.5. Let R be a ring, S a multiplicative subset of R and M an R-module. If u-S-fd_R(M) $\leq n$, then there exists an element $s \in S$ such that $fd_{R_s}(M_s) \leq n$.

Proof. Let M be an R-module with u-S- $fd_R(M) \le n$. Then there is an element $s \in S$ such that $s \operatorname{Tor}_{n+1}^R(R/I, M) = 0$ for any ideal I of R by Proposition 2.3. Let I_s be an ideal of R_s with I an ideal of R. Then $\operatorname{Tor}_{n+1}^{R_s}(R_s/I_s, M_s) \cong \operatorname{Tor}_{n+1}^R(R/I, M) \otimes_R R_s = 0$ since $s \operatorname{Tor}_{n+1}^R(R/I, M) = 0$. Hence $fd_{R_s}(M_s) \le n$.

Corollary 2.6. Let R be a ring and S a multiplicative subset of R. Let M be an R-module. Then u-S-fd_R(M) \geq fd_{Rs}M_S. Moreover, if S is composed of finite elements, then u-S-fd_R(M) = fd_{Rs}M_S.

Proof. Let $\cdots \to F_n \to \cdots \to F_1 \to F_0 \to M \to 0$ be an exact sequence with each F_i *u-S*-flat. By localizing at *S*, we can obtain a flat resolution of M_S over R_S as follows:

$$\rightarrow (F_n)_S \rightarrow \cdots \rightarrow (F_1)_S \rightarrow (F_0)_S \rightarrow (M)_S \rightarrow 0.$$

So u-S- $fd_R(M) \ge fd_{R_S}M_S$ by Proposition 2.3. Suppose S is composed of finite elements and $fd_{R_S}M_S = n$. Let $0 \to F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to M \to 0$ be an exact sequence, where F_i is flat over R for any $i = 0, \ldots, n-1$. Localizing at S, we have $(F_n)_S$ is flat over R_S . By [7, Proposition 3.8], F is u-S-flat. So u-S- $fd_R(M) \le n$ by Proposition 2.3.

Proposition 2.7. Let R be a ring and S a multiplicative subset of R. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a u-S-exact sequence of R-modules. Then the following assertions hold.

- (1) u-S- $fd_R(C) \le 1 + \max\{u$ -S- $fd_R(A), u$ -S- $fd_R(B)\}.$
- (2) If u-S-f $d_R(B) < u$ -S-f $d_R(C)$, then u-S-f $d_R(A) = u$ -S-f $d_R(C) 1 > u$ -S-f $d_R(B)$.

Proof. The proof is similar with that of the classical case (see [5, Theorem 3.6.7]). So we omit it.

Let \mathfrak{p} be a prime ideal of R and M an R-module. We denote $u-\mathfrak{p}-fd_R(M)$ to be $u-(R-\mathfrak{p})-fd_R(M)$ briefly. The next result gives a new local characterization of flat dimension of an R-module.

Proposition 2.8. Let R be a ring and M an R-module. Then

$$fd_R(M) = \sup\{u \cdot \mathfrak{p} \cdot fd_R(M) : \mathfrak{p} \in \operatorname{Spec}(R)\} \\ = \sup\{u \cdot \mathfrak{m} \cdot fd_R(M) : \mathfrak{m} \in \operatorname{Max}(R)\}.$$

Proof. Trivially, $\sup\{u \cdot \mathfrak{m} \cdot fd_R(M) : \mathfrak{m} \in \operatorname{Max}(R)\} \leq \sup\{u \cdot \mathfrak{p} \cdot fd_R(M) : \mathfrak{p} \in \operatorname{Spec}(R)\} \leq fd_R(M)$. Suppose $\sup\{u \cdot \mathfrak{m} \cdot fd_R(M) : \mathfrak{m} \in \operatorname{Max}(R)\} = n$. For any R-module N, there exists an element $s^{\mathfrak{m}} \in R - \mathfrak{m}$ such that $s^{\mathfrak{m}} \operatorname{Tor}_{n+1}^{R}(M, N) = 0$ by Proposition 2.3. Since the ideal generated by all $s^{\mathfrak{m}}$ is R, we have $\operatorname{Tor}_{n+1}^{R}(M, N) = 0$ for all R-modules N. So $fd_R(M) \leq n$. Suppose $\sup\{u \cdot \mathfrak{m} \cdot fd_R(M) : \mathfrak{m} \in \operatorname{Max}(R)\} = \infty$. Then for any $n \geq 0$, there exists a maximal ideal \mathfrak{m} and an element $s^{\mathfrak{m}} \in R - \mathfrak{m}$ such that $s^{\mathfrak{m}} \operatorname{Tor}_{n+1}^{R}(M, N) \neq 0$ for some R-module N. So for any $n \geq 0$, we have $\operatorname{Tor}_{n+1}^{R}(M, N) \neq 0$ for some R-module N. Thus $fd_R(M) = \infty$. So the equalities hold. □

3. On the *u-S*-weak global dimensions of rings

Recall that the weak global dimension w.gl.dim(R) of a ring R is the supremum of flat dimensions of all R-modules. Now, we introduce the u-S-analogue of weak global dimensions of rings R for a multiplicative subset S of R.

Definition 3.1. The u-S-weak global dimension of a ring R is defined by

u-S-w.gl.dim $(R) = \sup\{u$ -S- $fd_R(M) : M$ is an R-module $\}$.

Obviously, u-S-w.gl.dim $(R) \leq w.gl.dim(R)$ for any multiplicative subset S of R. And if S is composed of units, then u-S-w.gl.dim(R) = w.gl.dim(R). The next result characterizes the u-S-weak global dimension of a ring R.

Proposition 3.2. Let R be a ring and S a multiplicative subset of R. The following statements are equivalent for R:

- (1) u-S-w.gl.dim(R) $\leq n$;
- (2) u-S-fd_R(M) $\leq n$ for all R-modules M;
- (3) $\operatorname{Tor}_{n+k}^{R}(M, N)$ is u-S-torsion for all R-modules M, N and all k > 0;
- (4) $\operatorname{Tor}_{n+1}^{R}(M, N)$ is u-S-torsion for all R-modules M, N;
- (5) there exists an element $s \in S$ such that $s \operatorname{Tor}_{n+1}^{R}(R/I, R/J)$ for any ideals I and J of R.

Proof. $(1) \Rightarrow (2)$ and $(3) \Rightarrow (4)$: These are trivial.

 $(2) \Rightarrow (3)$: This follows from Proposition 2.3.

 $(4) \Rightarrow (1)$: Let M be an R-module and $0 \to F_n \to \cdots \to F_1 \to F_0 \to M \to 0$ an exact sequence, where $F_0, F_1, \ldots, F_{n-1}$ are flat R-modules. To complete the proof, it suffices, by Proposition 2.3, to prove that F_n is u-S-flat. Let N be an R-module. Thus u-S- $fd_R(N) \leq n$ by (4). It follows from Corollary 1.5 that $\operatorname{Tor}_1^R(N, F_n) \cong \operatorname{Tor}_{n+1}^R(N, M)$ is u-S-torsion. Thus F_n is u-S-flat.

(4) \Rightarrow (5): Let $M = \bigoplus_{I \leq R} R/I$ and $N = \bigoplus_{J \leq R} R/J$. Then there exists $s \in S$ such that

$$\operatorname{sTor}_{n+1}^R(M,N) = s \bigoplus_{I \trianglelefteq R, J \trianglelefteq R} \operatorname{Tor}_{n+1}^R(R/I,R/J) = 0.$$

Thus $s \operatorname{Tor}_{n+1}^{R}(R/I, R/J) = 0$ for any ideals I, J of R.

(5) \Rightarrow (4): Suppose M is generated by $\{m_i : i \in \Gamma\}$ and N is generated by $\{n_i : i \in \Lambda\}$. Set $M_0 = 0$ and $M_\alpha = \langle m_i : i < \alpha \rangle$ for each $\alpha \leq \Gamma$. Then M has a continuous filtration $\{M_\alpha : \alpha \leq \Gamma\}$ with $M_{\alpha+1}/M_\alpha \cong R/I_{\alpha+1}$ and $I_\alpha = \operatorname{Ann}_R(m_\alpha + M_\alpha \cap Rm_\alpha)$. Similarly, N has a continuous filtration $\{N_\beta : \beta \leq \Lambda\}$ with $N_{\beta+1}/N_\beta \cong R/J_{\beta+1}$ and $J_\beta = \operatorname{Ann}_R(n_\beta + N_\beta \cap Rn_\beta)$. Since $s\operatorname{Tor}_{n+1}^R(R/I_\alpha, R/J_\beta) = 0$ for each $\alpha \leq \Gamma$ and $\beta \leq \Lambda$, it is easy to verify $s\operatorname{Tor}_{n+1}^R(M, N) = 0$ by transfinite induction on both positions of M and N. \Box

The following Corollaries 3.4, 3.5, 3.3 and 3.7 can be deduced by Corollaries 2.5, 2.6, 2.4 and Proposition 2.8.

Corollary 3.3. Let R be a ring and $S' \subseteq S$ multiplicative subsets of R. Then u-S-w.gl.dim $(R) \leq S'$ -w.gl.dim(R).

Corollary 3.4. Let R be a ring and S a multiplicative subset of R. If u-Sw.gl.dim $(R) \leq n$, then there exists an element $s \in S$ such that w.gl.dim $(R_s) \leq n$.

Corollary 3.5. Let R be a ring and S a multiplicative subset of R. Then u-S-w.gl.dim $(R) \leq w.gl.dim(R_S)$. Moreover, if S is composed of finite elements, then u-S-w.gl.dim $(R) = w.gl.dim(R_S)$.

The following example shows that the reverse inequality of Corollary 3.5 does not hold in general.

Example 3.6. Let $R = k[x_1, x_2, \ldots, x_{n+1}]$ be a polynomial ring with n + 1 indeterminates over a field k $(n \ge 0)$. Set $S = k[x_1] - \{0\}$. Then S is a multiplicative subset of R and $R_S = k(x_1)[x_2, \ldots, x_{n+1}]$ is a polynomial ring with n indeterminates over the field $k(x_1)$. So w.gl.dim $(R_S) = n$ by [5, Theorem 3.8.23]. Let $s \in S$. Then we have $R_s = k[x_1]_s[x_2, \ldots, x_{n+1}]$. Since $k[x_1]$ is not a G-domain, $k[x_1]_s$ is not a field (see [4, Theorem 21]). Thus w.gl.dim $(k[x_1]_s) = 1$. So w.gl.dim $(R_s) = n + 1$ for any $s \in S$ by [5, Theorem 3.8.23] again. Consequently u-S-w.gl.dim $(R) \ge n + 1$ by Corollary 3.4.

Let \mathfrak{p} be a prime ideal of a ring R and u- \mathfrak{p} -w.gl.dim(R) denote u- $(R - \mathfrak{p})$ -w.gl.dim(R) briefly. We have a new local characterization of weak global dimensions of commutative rings.

Corollary 3.7. Let R be a ring. Then

$$w.gl.dim(R) = \sup\{u-\mathfrak{p}-w.gl.dim(R) : \mathfrak{p} \in \operatorname{Spec}(R)\}\$$
$$= \sup\{u-\mathfrak{m}-w.gl.dim(R) : \mathfrak{m} \in \operatorname{Max}(R)\}.$$

The rest of this section mainly consider rings with *u-S*-weak global dimensions at most one. Recall from [7] that a ring R is called *u-S*-von Neumann regular provided that there exist $s \in S$ and $r \in R$ such that $sa = ra^2$ for any $a \in R$. Thus by [7, Theorem 3.11], the following result holds.

Corollary 3.8. Let R be a ring and S a multiplicative subset of R. The following assertions are equivalent:

- (1) R is a u-S-von Neumann regular ring;
- (2) for any *R*-module *M* and *N*, there exists $s \in S$ such that $s \operatorname{Tor}_{1}^{R}(M, N) = 0$;
- (3) there exists $s \in S$ such that $s \operatorname{Tor}_{1}^{R}(R/I, R/J) = 0$ for any ideals I and J of R;
- (4) any R-module is u-S-flat;
- (5) u-S-w.gl.dim(R) = 0.

Trivially, von Neumann regular rings are u-S-von Neumann regular, and if a ring R is a u-S-von Neumann regular ring, then R_S is von Neumann regular. It was proved in [7, Proposition 3.17] that if the multiplicative subset S of Ris composed of non-zero-divisors, then R is u-S-von Neumann regular if and only if R is von Neumann regular. Examples of u-S-von Neumann regular rings that are not von Neumann regular, and a ring R for which R_S is von Neumann regular but R is not u-S-von Neumann regular are given in [7].

Proposition 3.9. Let R be a ring and S a multiplicative subset of R. The following assertions are equivalent:

- (1) u-S-w.gl.dim(R) ≤ 1 ;
- (2) any submodule of u-S-flat modules is u-S-flat;
- (3) any submodule of flat modules is u-S-flat;
- (4) $\operatorname{Tor}_{2}^{R}(M, N)$ is u-S-torsion for all R-modules M, N;
- (5) there exists an element $s \in S$ such that $s \operatorname{Tor}_{2}^{R}(R/I, R/J) = 0$ for any ideals I, J of R.

Proof. The equivalences follow from Proposition 3.2.

The following lemma can be found in [2, Chapter 1 Exercise 6.3] for integral domains. However it is also true for any commutative ring and we give a proof for completeness.

Lemma 3.10. Let R be a ring and I, J ideals of R. Then $\operatorname{Tor}_2^R(R/I, R/J) \cong \operatorname{Ker}(\phi)$, where $\phi: I \otimes J \to IJ$ is an R-homomorphism defined by $\phi(a \otimes b) = ab$. Proof. Let I and J be ideals of R. Then $\operatorname{Tor}_2^R(R/I, R/J) \cong \operatorname{Tor}_1^R(R/I, J)$. Consider the following exact sequence: $0 \to \operatorname{Tor}_1^R(R/I, J) \to I \otimes_R J \xrightarrow{\phi} R \otimes_R J$, where ϕ is an R-homomorphism such that $\phi(a \otimes b) = ab$. We have $\operatorname{Tor}_2^R(R/I, R/J) \cong \operatorname{Ker}(\phi)$.

Trivially, a ring R with w.gl.dim $(R) \leq 1$ has a *u*-*S*-weak global dimension at most one. The following example shows the converse does not hold generally.

Example 3.11. Let A be a ring with w.gl.dim(A) = 1, $T = A \times A$ the direct product of A. Set $s = (1,0) \in T$. Then $s^2 = s$. Let $R = T[x]/\langle sx, x^2 \rangle$ with x an indeterminate and $S = \{1, s\}$ be a multiplicative subset of R. Then u-S-w.gl.dim(R) = 1 but w.gl.dim $(R) = \infty$.

Proof. Since $x^2 = 0$ and sx = 0 in R, every element in R can uniquely be written as r = (a, b) + (0, c)x where $a, b, c \in A$. Let $f : R \to A$ be a ring homomorphism defined by f((a, b) + (0, c)x) = a. Then f makes A a module retract of R. Let I and J be ideals of R. Let $r_1 = (a_1, b_1) + (0, c_1)x$ and $r_2 = (a_2, b_2) + (0, c_2)$ be elements in I and J, respectively, such that $r_1 \otimes r_2 \in$ Ker(ϕ), where $\phi : I \otimes_R J \to IJ$ is the multiplicative homomorphism. Then $r_1r_2 = (a_1a_2, b_1b_2) + (0, b_1c_2 + b_2c_1)x = 0$, and so $a_1a_2 = 0$ in A. By Lemma 3.10, $a_1 \otimes_A a_2 = 0$ in $f(I) \otimes_A f(J)$ since w.gl.dim(A) = 1. Consequently $s^2r_1 \otimes_R r_2 = sr_1 \otimes_R sr_2 = (a_1, 0) \otimes_R (a_2, 0) = 0$ in $I \otimes J$. So $s^2 \operatorname{Tor}_2^R(R/I, R/J) =$ 0 by Lemma 3.10. It follows that u-S-w.gl.dim(R) ≤ 1 by Proposition 3.9. Since $R_S \cong A$ has a weak global dimension 1, u-S-w.gl.dim(R) = 1 by Corollary 3.8 and [7, Corollary 3.14]. Since R is a non-reduced coherent ring, it follows from [3, Corollary 4.2.4] that w.gl.dim(R) = ∞.

4. U-S-weak global dimensions of factor rings and polynomial rings

In this section, we mainly consider the *u*-S-weak global dimensions of factor rings and polynomial rings. Firstly, we give an inequality of *u*-S-weak global dimensions for ring homomorphisms. Let $\theta : R \to T$ be a ring homomorphism. Let S be a multiplicative subset of R. Then $\theta(S) = \{\theta(s) : s \in S\}$ is a multiplicative subset of T.

Lemma 4.1. Let $\theta : R \to T$ be a ring homomorphism and S a multiplicative subset of R. Suppose L is a $u \cdot \theta(S)$ -flat T-module. Then for any R-module X and any $n \ge 0$, $\operatorname{Tor}_n^R(X, L)$ is $u \cdot S$ -isomorphic to $\operatorname{Tor}_n^R(X, T) \otimes_T L$. Consequently, $u \cdot S \cdot fd_R(L) \le u \cdot S \cdot fd_R(T)$.

Proof. If n = 0, then $X \otimes_R L \cong X \otimes_R (T \otimes_T L) \cong (X \otimes_R T) \otimes_T L$.

If n = 1, let $0 \to A \to P \to X \to 0$ be an exact sequence of *R*-modules where *P* is free. Thus we have two exact sequences of *T*-modules: $0 \to \operatorname{Tor}_{1}^{R}(X,T) \to A \otimes_{R} T \to P \otimes_{R} T \to X \otimes_{R} T \to 0$ and $0 \to \operatorname{Tor}_{1}^{R}(X,L) \to A \otimes_{R} L \to P \otimes_{R} L \to X \otimes_{R} L \to 0$. Consider the following commutative diagram with exact sequence:

Since L is a u- $\theta(S)$ -flat T-module, δ is a u- $\theta(S)$ -monomorphism. By Theorem 1.2, h is a u- $\theta(S)$ -isomorphism over T. So h is a u-S-isomorphism over R since T-modules are viewed as R-modules through θ . By dimension-shifting, we can

obtain that $\operatorname{Tor}_{n}^{R}(X, L)$ is *u*-S-isomorphic to $\operatorname{Tor}_{n}^{R}(X, T) \otimes_{T} L$ for any *R*-module X and any $n \geq 0$.

Thus for any *R*-module X, if $\operatorname{Tor}_n^R(X, T)$ is *u-S*-torsion, then $\operatorname{Tor}_n^R(X, L)$ is also *u-S*-torsion. Consequently, $u-S-fd_R(L) \leq u-S-fd_R(T)$.

Proposition 4.2. Let $\theta : R \to T$ be a ring homomorphism and S a multiplicative subset of R. Let M be an T-module. Then

u-S-f $d_R(M) \le u$ - $\theta(S)$ -f $d_T(M) + u$ -S-f $d_R(T)$.

Proof. Assume $u \cdot \theta(S) \cdot fd_T(M) = n < \infty$. If n = 0, then M is $u \cdot \theta(S)$ -flat over T. By Lemma 4.1, $u \cdot S \cdot fd_R(M) \leq n + u \cdot S \cdot fd_R(T)$.

Now we assume n > 0. Let $0 \to A \to F \to M \to 0$ be an exact sequence of *T*-modules, where *F* is a free *T*-module. Then $u \cdot \theta(S) \cdot fd_T(A) = n - 1$ by Corollary 1.5 and Proposition 2.3. By induction, $u \cdot S \cdot fd_R(A) \leq n - 1 + u \cdot S \cdot fd_R(T)$. Note that $u \cdot S \cdot fd_R(T) = u \cdot S \cdot fd_R(F)$. By Proposition 2.7, we have

$$u-S-fd_{R}(M) \leq 1 + \max\{u-S-fd_{R}(F), u-S-fd_{R}(A)\} \\ \leq 1 + n - 1 + u-S-fd_{R}(T) \\ = u-\theta(S)-fd_{T}(M) + u-S-fd_{R}(T).$$

Let R be a ring, I an ideal of R and S a multiplicative subset of R. Then $\pi: R \to R/I$ is a ring epimorphism and $\pi(S) := \overline{S} = \{s + I \in R/I : s \in S\}$ is naturally a multiplicative subset of R/I.

Proposition 4.3. Let R be a ring and S a multiplicative subset of R. Let $a \in R$ be an element such that u-S- $fd_R(R/aR) = 1$. Written $\overline{R} = R/aR$ and $\overline{S} = \{s + aR \in \overline{R} : s \in S\}$. Then the following assertions hold.

(1) Let M be a nonzero \overline{R} -module. If $u-\overline{S}-fd_{\overline{R}}(M) < \infty$, then

$$u$$
-S- $fd_R(M) = u$ -S- $fd_{\overline{R}}(M) + 1$.

(2) If $u - \overline{S} - w.gl.dim(\overline{R}) < \infty$, then

u-S-w.gl.dim(R) $\geq u$ - \overline{S} -w.gl.dim(\overline{R}) + 1.

Proof. (1) Set $u-\overline{S}-fd_{\overline{R}}(M) = n$. By Proposition 4.2, we have $u-S-fd_R(M) \leq u-\overline{S}-fd_{\overline{R}}(M) + 1 = n + 1$. Since $u-\overline{S}-fd_{\overline{R}}(M) = n$, then there is an injective \overline{R} -module C such that $\operatorname{Tor}_{\overline{R}}^{\overline{R}}(M,C)$ is not $u-\overline{S}$ -torsion. By [5, Theorem 2.4.22], there is an injective R-module E such that $0 \to C \to E \to E \to 0$ is exact. By [5, Proposition 3.8.12(4)], $\operatorname{Tor}_{n+1}^{R}(M,E) \cong \operatorname{Tor}_{n}^{\overline{R}}(M,C)$. Thus $\operatorname{Tor}_{n+1}^{R}(M,E)$ is not u-S-torsion. So u-S- $fd_{R}(M) = u$ - $\overline{S}-fd_{\overline{R}}(M) + 1$.

(2) Let $n = u \cdot \overline{S}$ -w.gl.dim (\overline{R}) . Then there is a nonzero \overline{R} -module M such that $u \cdot \overline{S} \cdot fd_{\overline{R}}(M) = n$. Thus $u \cdot S \cdot fd_{R}(M) = n + 1$ by (1). So $u \cdot S \cdot w.gl.dim(R) \ge u \cdot \overline{S} \cdot w.gl.dim(\overline{R}) + 1$.

Let R be a ring and M an R-module. Denote by R[x] the polynomial ring with one indeterminate, where all coefficients are in R. Set $M[x] = M \otimes_R R[x]$. Then M[x] can be seen as an R[x]-module naturally. It is well-known w.gl.dim(R[x]) =w.gl.dim(R) (see [5, Theorem 3.8.23]). In this section, we give a *u-S*-analogue of this result. Let *S* be a multiplicative subset of *R*. Then *S* is a multiplicative subset of R[x] naturally.

Lemma 4.4. Let R be a ring and S a multiplicative subset of R. Let T be an R-module and F an R[x]-module. Then the following assertions hold.

- (1) T is u-S-torsion over R if and only if T[x] is a u-S-torsion R[x]-module.
- (2) If F is u-S-flat over R[x], then F is u-S-flat over R.

Proof. (1) If sT[x] = 0 for some $s \in S$, then trivially sT = 0. So T is *u-S*-torsion over R. Suppose sT = 0 for some $s \in S$. Then $sT[x] \cong (sT)[x] = 0$. Thus T[x] is a *u-S*-torsion R[x]-module.

(2) Suppose F is a u-S-flat R[x]-module. By [3, Theorem 1.3.11],

$$\operatorname{Tor}_{1}^{R}(F,L)[x] \cong \operatorname{Tor}_{1}^{R[x]}(F[x],L[x])$$

is *u-S*-torsion. Thus there exists an element $s \in S$ such that $s \operatorname{Tor}_1^R(F, L)[x] = 0$. So $s \operatorname{Tor}_1^R(F, L) = 0$. It follows that F is a *u-S*-flat *R*-module.

Proposition 4.5. Let R be a ring, S a multiplicative subset of R and M an R-module. Then u-S- $fd_{R[x]}(M[x]) = u$ -S- $fd_R(M)$.

Proof. Assume that u-S- $fd_R(M) \leq n$. Then $\operatorname{Tor}_{n+1}^R(M, N)$ is u-S-torsion for any R-module N by Proposition 2.3. Thus for any R[x]-module L,

$$\operatorname{For}_{n+1}^{R[x]}(M[x], L) \cong \operatorname{Tor}_{n+1}^{R}(M, L)$$

is u-S-torsion for any R[x]-module L by [3, Theorem 1.3.11]. Consequently, u-S- $fd_{R[x]}(M[x]) \leq n$ by Proposition 2.3.

Let $0 \to F_n \to \cdots \to F_1 \to F_0 \to M[x] \to 0$ be an exact sequence with each F_i u-S-flat over R[x] $(1 \le i \le n)$. Then it is also a u-S-flat resolution of M[x] over R by Lemma 4.4. Thus $\operatorname{Tor}_{n+1}^R(M[x], N)$ is u-S-torsion for any R-module N by Proposition 2.3. It follows that $s\operatorname{Tor}_{n+1}^R(M[x], N) =$ $s \bigoplus_{i=1}^{\infty} \operatorname{Tor}_{n+1}^R(M, N) = 0$. Thus $\operatorname{Tor}_{n+1}^R(M, N)$ is u-S-torsion. Consequently, u-S- $fd_R(M) \le u$ -S- $fd_{R[x]}(M[x])$ by Proposition 2.3 again. \Box

Let M be an R[x]-module. Then M can be naturally viewed as an R-module. Define $\psi:M[x]\to M$ by

$$\psi(\sum_{i=0}^n x^i \otimes m_i) = \sum_{i=0}^n x^i m_i, \qquad m_i \in M.$$

And define $\varphi: M[x] \to M[x]$ by

$$\varphi(\sum_{i=0}^n x^i \otimes m_i) = \sum_{i=0}^n x^{i+1} \otimes m_i - \sum_{i=0}^n x^i \otimes xm_i, \qquad m_i \in M.$$

111

Lemma 4.6 ([5, Theorem 3.8.22]). Let R be a ring. For any R[x]-module M,

$$0 \to M[x] \xrightarrow{\varphi} M[x] \xrightarrow{\psi} M \to 0$$

 $is \ exact.$

Theorem 4.7. Let R be a ring and S a multiplicative subset of R satisfying u-S-fd_{R[x]}(R) = 1. Then u-S-w.gl.dim(R[x]) = u-S-w.gl.dim(R) + 1.

Proof. Let M be an R[x]-module. Then, by Lemma 4.6, there is an exact sequence over R[x]:

$$0 \to M[x] \to M[x] \to M \to 0.$$

By Proposition 2.7 and Proposition 4.5,

(*)
$$u-S-fd_R(M) \le u-S-fd_{R[x]}(M) \le 1+u-S-fd_{R[x]}(M[x]) = 1+u-S-fd_R(M).$$

Thus if u-S-w.gl.dim $(R) < \infty$, then u-S-w.gl.dim $(R[x]) < \infty$.

Conversely, if u-S-w.gl.dim $(R[x]) < \infty$, then for any R-module M, u-S- $fd_R(M) = u$ -S- $fd_{R[x]}(M[x]) < \infty$ by Proposition 4.5. Therefore we have u-S-w.gl.dim $(R) < \infty$ if and only if u-S-w.gl.dim $(R[x]) < \infty$. Now we assume that both of these are finite. Then u-S-w.gl.dim $(R[x]) \leq u$ -S-w.gl.dim(R) + 1 by (*). Since $R \cong R[x]/xR[x]$ and u-S- $fd_{R[x]}(R[x]/xR[x]) = u$ -S- $fd_{R[x]}(R) = 1$, u-S-w.gl.dim $(R[x]) \geq u$ -S-w.gl.dim(R) + 1 by Proposition 4.3. Consequently, we have u-S-w.gl.dim(R[x]) = u-S-w.gl.dim(R) + 1.

Remark 4.8. Remark that u-S- $fd_{R[x]}(R) = 1$ in the following cases.

(1) $S = U(\mathbf{R})$ is consist of units.

(2) $R = R_1 \times R_2$ and $S = U(R_1) \times 0$.

We also remark that u-S-w.gl.dim(R[x]) may not be equal to u-S-w.gl.dim(R)+ 1 in general. For example, let S be a multiplicative subset of R that contains 0. Then u-S-w.gl.dim(R) = u-S-w.gl.dim(R[x]) = 0.

References

- D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407–4416. https://doi.org/10.1081/AGB-120013328
- [2] L. Fuchs and L. Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, 84, American Mathematical Society, Providence, RI, 2001. https://doi. org/10.1090/surv/084
- [3] S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
- [4] I. Kaplansky, Commutative Rings, Allyn and Bacon, Inc., Boston, MA, 1970.
- [5] F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
- S. H. Zhang, T-projective modules and G-semisimple rings, Acta Math. Sinica 35 (1992), no. 3, 378–386.
- [7] X. L. Zhang, Characterizing S-flat modules and S-von Neumann regular rings by uniformity, to appear in Bull. Korean Math. Soc. https://arxiv.org/abs/2105.07941.

X. ZHANG

XIAOLEI ZHANG SCHOOL OF MATHEMATICS AND STATISTICS SHANDONG UNIVERSITY OF TECHNOLOGY ZIBO 255049, P. R. CHINA *Email address*: zxlrghj@163.com