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THE u-S-WEAK GLOBAL DIMENSIONS OF
COMMUTATIVE RINGS

XIAOLEI ZHANG

ABSTRACT. In this paper, we introduce and study the u-S-weak global
dimension u-S-w.gl.dim(R) of a commutative ring R for some multiplica-
tive subset S of R. Moreover, the u-S-weak global dimensions of factor
rings and polynomial rings are investigated.

Throughout this article, R is always a commutative ring with identity 1 and
S is always a multiplicative subset of R, that is, 1 € S and s1s5 € S for any
s1 € 5,52 € S. We denote by U(R) the set of all units in R. In 2002, Anderson
and Dumitrescu [1] defined an S-Noetherian ring R for which any ideal of R
is S-finite. Recall from [1] that an R-module M is called S-finite provided
that sM C F for some s € S and some finitely generated submodule F of M.
An R-module T is called u-S-torsion if sT' = 0 for some s € S (see [7]). So
an R-module M is S-finite if and only if M/F is u-S-torsion for some finitely
generated submodule F' of M. The idea derived from u-S-torsion modules is
deserved to be further investigated. In [7], the author of this paper introduced
the class of u-S-flat modules F' for which the functor F ® g — preserves u-S-
exact sequences. The class of u-S-flat modules can be seen as a “uniform”
generalization of that of flat modules, since an R-module F' is u-S-flat if and
only if Torf(F, M) is u-S-torsion for any R-module M (see [7, Theorem 3.2]).
The class of u-S-flat modules owns the following u-S-hereditary property: let

0— A ENY;JEN C' — 0 be a u-S-exact sequence, if B and C' are u-S-flat so is
A (see [7, Proposition 3.4]). So it is worth to study the u-S-analogue of flat
dimensions of R-modules and the u-S-analogue of a weak global dimension of
commutative rings.

In this article, we define the u-S-flat dimension u-S-fdr(M) of an R-module
M to be the length of the shortest u-S-flat u-S-resolution of M. We charac-
terize u-S-flat dimensions of R-modules using the uniform torsion property of
the “Tor” functors in Proposition 3.2. Besides, we obtain a new local charac-
terization of flat dimensions of R-modules (see Corollary 3.7). The u-S-weak
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global dimension u-S-w.gl.dim(R) of a commutative ring R is defined to be
the supremum of u-S-flat dimensions of all R-modules. A characterization of
u-S-weak global dimensions is given in Proposition 3.2. Examples of rings
R for which u-S-w.gl.dim(R) # w.gl.dim(Rg) can be found in Example 3.11.
U-S-von Neumann regular rings are firstly introduced in [7] for which there
exist s € S and r € R such that sa = ra® for any a € R. By [7, Theorem
3.11], a ring R is u-S-von Neumann regular if and only if all R-modules are
u-S-flat. So w-S-von Neumann regular rings are exactly commutative rings
with u-S-weak global dimensions equal to 0 (see Corollary 3.8). We also study
commutative rings R with u-S-w.gl.dim(R) at most 1. The nontrivial example
of a commutative ring R with u-S-w.gl.dim(R) < 1 but an infinite weak global
dimension is given in Example 3.11. In the final section, we investigate the
u-S-weak global dimensions of factor rings and polynomial rings and show that
u-S-w.gl.dim(R[z]) = u-S-w.gl.dim(R) + 1 for a ring R under some condition
(see Theorem 4.7).

1. Preliminaries

Recall from [7] that an R-module T is called a u-S-torsion module provided

that there exists an element s € S such that sT = 0. An R-sequence M ER
N 25 L is called u-S-ezact (at N) provided that there is an element s € S such
that sKer(g) C Im(f) and sIm(f) C Ker(g). We say a long R-sequence - - - —

A,y f—"> A, ﬂ) Apy1 — -+ is u-S-exact, if for any n there is an element
s € S such that sKer(f,+1) C Im(f,) and sIm(f,,) C Ker(fn+1). A u-S-exact
sequence 0 - A — B — C — 0 is called a short u-S-exact sequence. An R-
homomorphism f: M — N is a u-S-monomorphism (resp., u-S-epimorphism,
u-S-isomorphism) provided 0 — M ENS Y (resp., M ENG VN 0,0 - M EN
N — 0) is u-S-exact. It is easy to verify an R-homomorphism f: M — N isa
u~-S-monomorphism (resp., u-S-epimorphism, u-S-isomorphism) if and only if
Ker(f) (resp., Coker(f), both Ker(f) and Coker(f)) is a u-S-torsion module.

Proposition 1.1 ([6, Lemma 2.1]). Let R be a ring and S a multiplicative
subset of R. Suppose there is a u-S-isomorphism f : M — N for R-modules
M and N. Then there is a u-S-isomorphism g : N — M. Moreover, there is
t € S such that fog=1tldy and go f = tldy,.

Let R be a ring and S a multiplicative subset of R. Let M and N be R-
modules. We say M is u-S-isomorphic to N if there exists a u-S-isomorphism
f M — N. A family C of R-modules is said to be closed under u-S-
isomorphisms if M is u-S-isomorphic to N and M is in C, then N is also
in C. It follows from Proposition 1.1 that the existence of u-S-isomorphisms of
two R-modules is an equivalence relation. Next, we give a u-S-analogue of the
Five Lemma.
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Theorem 1.2 (u-S-analogue of Five Lemma). Let R be a ring and S a mul-
tiplicative subset of R. Consider the following commutative diagram with u-S-
exact rows:

A g1 B 92 C g3 D 9ga E

fAl fBl l/fc \LfD l/fE

bop Al or e pr g

(1) If fg and fp are u-S-monomorphisms and fa is a u-S-epimorphism,
then fo is a u-S-monomorphism.

(2) If fB and fp are u-S-epimorphisms and fg is a u-S-monomorphism,
then fo is a u-S-epimorphism.

(3) If fa is a u-S-epimorphism, fg is a u-S-monomorphism, and fg and
fp are u-S-isomorphisms, then fc is a u-S-isomorphism.

(4) If fa, fB, fp and fg are all u-S-isomorphisms, then fc is a u-S-
isomorphism.

Proof. (1) Let = € Ker(fc). Then fpgs(z) = hsfc(xz) = 0. Since fp is a u-
S-monomorphism, s;Ker(fp) = 0 for some s; € S. So s1g3(x) = gs(s1z) = 0.
Since the top row is u-S-exact, there exists so € S such that soKer(gs) C
Im(g2). Thus there exists b € B such that ga(b) = sas1z. Hence hofp(b) =
fega(b) = fo(sasiz) = 0. Thus there exists s3 € S such that ssKer(hg) C
Im(hy). So there exists a’ € A’ such that hi(a’) = s2fp(b). Since fa is a
u~S-epimorphism, there exists s4 € S such that s4A" C Im(f4). So there exists
a € A such that sqa’ = fa(a). Hence s4s2f5(b) = ssh1(a’) = hi(fa(a)) =
fe(g1(a)). So sgs2b — g1(a) € Ker(fp). Since fp is a u-S-monomorphism,
there exists s5 € S such that ssKer(fg) = 0. Thus s5(s4820 — g1(a)) = 0.
S0 8554828251 = 85(g2(8482b)) = s592(g1(a)). Since the top row is u-S-exact
at B, there exists sg € S such that sglm(g;) C Ker(g2). So sgs5848282812 =
s592(s6g1(a)) = 0. Consequently, if we set s = sgs584525281, then sKer(fo) =
0. It follows that fco is a u-S-monomorphism.

(2) Let « € C’. Since fp is a u-S-epimorphism, there exists s; € S such
that sy D" C Im(fp). Thus there exists d € D such that fp(d) = sihs(x).
By the commutativity of the right square, we have frgs(d) = hyafp(d) =
s1ha(hs(z)). Since the bottom row is u-S-exact at D', there exists so € S
such that s4Im(hs) C Ker(hy). So safr(g4(d)) = s1ha(sshs(x)) = 0. Since fg
is a u-S-monomorphism, there exists s3 € S such that ssKer(fg) = 0. Thus
s38494(d) = 0. Since the top row is u-S-exact at D, there there exists s5 € S
such that ssKer(gs) C Im(gs). So there exists ¢ € C such that sssgsqd =
g3(c). Hence sss3safp(d) = fp(gs(c)) = hs(fo(c)). Since ssszsafp(d) =
hs(s18583842), we have fo(c) — s185s3s4x € Ker(hs). Since the bottom row
is u-S-exact at C’, there exists sg € S such that sgKer(hs) C Im(hs). Thus
there exists ' € B’ such that sg(fo(c) — s18583842) = ha(V'). Since fp is a u-
S-epimorphism, there exists sy € S such that sy B’ C Im(fp). So s7b’' = fp(b)
for some b € B. Thus fc(g92(b)) = ha(fp(b)) = srha(b) = s7(se(fclc) —
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$18583842)). S0 $75651858384C = S786fc(c) — fo(g2(b)) = fo(srsec — g2(b)) €
Im(fc). Consequently, if we set s = s78681858384, then sC’ C Im(fo). Tt
follows that fo is a u-S-epimorphism.

It is easy to see (3) follows from (1) and (2), while (4) follows from (3). O

Recall from [7, Definition 3.1] that an R-module F is called u-S-flat provided
that for any u-S-exact sequence 0 - A — B — C — 0, the induced sequence
0>A®Rr F—-B®grF — C®prF — 0is u-S-exact. It is easy to verify that
the class of u-S-flat modules is closed under u-S-isomorphisms by the following
result.

Lemma 1.3 ([7, Theorem 3.2]). Let R be a ring, S a multiplicative subset of
R and F an R-module. The following assertions are equivalent:
(1) F is u-S-flat;

(2) for any short exact sequence 0 — A LB %o 0, the induced

sequence 0 = AQr F f®—RF> B®grF ELLEIN C®rF — 0 isu-S-exact;

(3) Torf (M, F) is u-S-torsion for any R-module M;
(4) Tor®(M, F) is u-S-torsion for any R-module M and n > 1.
The following result says that a short u-S-exact sequence induces a long
u-S-exact sequence by the functor “Tor” as the classical case.

Theorem 1.4. Let R be a ring, S a multiplicative subset of R and N an

R-module. Let 0 — A 5 B % C = 0 be a u-S-ezact sequence of R-
modules. Then for anyn > 1 there is an R-homomorphism 6, : Tor?(C, N) —
Tor® (A, N) such that the induced sequence

- = Tor® (A, N) = Tor® (B, N) — Tor®(C, N) 2% Tor®_| (A, N) —

Torf ((B,N) = -+ = TorF(C,N) 25 A@r N 5 Bor N - C@r N =0

is u-S-exact.

Proof. Since the sequence 0 — A 1B % ¢ 5 0 is u-S-exact at B, there
are three exact sequences 0 — Ker(f) N Im(f) — 0, 0 —

Ker(g) =25 p Im(g) — 0 and 0 — Im(g) C
Coker(g) — 0 with Ker(f) and Coker(g) u-S-torsion. There also exists s € S
such that sKer(g) C Im(f) and sIm(f) C Ker(g). Denote T' = Ker(f) and
T" = Coker(g).

Firstly, consider the exact sequence

TIm(g) 1Im(g) TCoker(g)

TorE (itm(g),N)
—n T

Torf,,(T’,N) — Torf(Im(g), N) Tor®(C, N) — Tor(T', N).

Since 7" is u-S-torsion, Tork, (7", N) and Tor (1", N) are u-S-torsion. Thus
Torf(ilm(g),N) is a wu-S-isomorphism. So there is also a wu-S-isomorphism
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hingg) Tor?(C, N) — Tor%(Im(g), N) by Proposition 1.1. Consider the exact
sequence:

Torf_y (T1m () N)

Tor? (T,N) — Tor® (A, N) — =225 Torf | (Im(f), N) — TorZ (T, N).

n—1 n—1

Since T is u-S-torsion, we have Torff 1(7r1m(f)7N) is a u-S-isomorphism. So
there is also a u-S-isomorphism hy ( ) : Tor” | (Im(f), N) — Tor® (A, N) by
Proposition 1.1. We have two exact sequences

Tor s (iLker(g)+N)
%

Torf, | (T1, N) — Tork (sKer(g), N) Torf (Im(f), N) — Torf, | (T1, N)

and

R Tor} (i2ker(g)+IV) R
Torn+1(T27N) — Tor?(sKer(g), N) — 22" Tor® (Ker(g), N) — Tor,, (T, N),

where T1 = Im(f )/sKer(g) and T = Im(f)/sIm(f) are u-S-torsion. So
Tork (! isker(g): V) and Tork (i2 chr(g)v N) are u-S-isomorphisms. Thus there is a

u-S-isomorphism A?, : Tor¥(Ker(g), N) — TorZ(sKer(g), N). Note that

Tor B (T1m (), N)
o

sKer(g) -
5’71
there is an exact sequence Tor?(B, N) Tor%(Im(g), N) —=2,

Tor 1 (*Ker ’
Tor® | (Ker(g), N) w Tor® (B, N). Set 6, o 6™

hn(g) © Otim(g) ©

ther(g) o Torf(iiKer(g)7 N) o hy (1f) : Tor (C,N) — TOI“E,l(A, N). Since
h?m(g)7 o m(g)’ h;‘Ker(g) and hlm( ) are u-S-isomorphisms, we have the sequence

Tor®(B,N) — Tor®(C, N) 25 Tor®_, (A, N) — Tor®_| (B, N) is u-S-exact.
Secondly, con51der the exact sequence:

TOI‘f(’L‘Im(f) 7J\f)
e

Torf, (T, N) — Tor[ (A, N) Tor®(Im(f), N) — Tor® (T, N).

Since T is u-S-torsion, Torn (itm(f), N) is a u-S-isomorphism. Consider the
exact sequences:

Tor (iker(g),N)
—>

Tor, | (Im(g), N) — Tor%(Ker(g), N) Tor’(B, N) — TorZ(Im(g), N)

and

Torf}(ihn(_q),N)
— T

Torf, (T', N) — TorZ(Im(g), N) r2(C,N) — Tor®(T", N).

Since T" is u-S-torsion, we have Torf(z'lm(g), ) is a u-S-isomorphism. Since
Torff(iiKer(g), N) and TorR(iiKer(q),
Tor(A, N) — Tor®(B, N) — Tor(C, N)

is u-S-exact at TorZ(B, N).
Continue by the above method, we have a u-S-exact sequence:

- = Torf (A, N) = Tor®(B, N) = Tor®(C, N) 2% Tor? | (A, N) —

N) are u-S-isomorphisms as above,

Tor® [(B,N) = -+ = Tor®(C,N) 2 A@r N - Bor N = C @ N — 0.
0
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Corollary 1.5. Let R be a ring, S a multiplicative subset of R and N an R-
module. Suppose 0 — A 1B % ¢ 0 is a u-S-exact sequence of R-modules
where B is u-S-flat. Then Torf,,(C,N) is u-S-isomorphic to Tor (A, N)
for any n > 0. Consequently, Torffﬂ(c, N) is u-S-torsion if and only if
Tor (A, N) is u-S-torsion for any n > 0.

Proof. Tt follows from Lemma 1.3 and Theorem 1.4. (]

2. On the u-S-flat dimensions of modules

Let R be a ring. The flat dimension of an R-module M is defined as the
shortest flat resolution of M. We now introduce the notion of a u-S-flat di-
mension of an R-module as follows.

Definition 2.1. Let R be a ring, S a multiplicative subset of R and M an
R-module. We write u-S-fdr(M) < n (u-S-fd abbreviates a uniformly S-flat
dimension) if there exists a u-S-exact sequence of R-modules

(&) 0—-F,— - —>F—>F—>M-=0

where each F; is u-S-flat for i = 0,...,n. The u-S-exact sequence (<) is said
to be a u-S-flat u-S-resolution of length n of M. If such a finite u-S-flat u-
S-resolution does not exist, then we say u-S-fdr(M) = oo; otherwise, define
u-S-fdr(M) = n if n is the length of the shortest u-S-flat u-S-resolution of
M.

Trivially, the u-S-flat dimension of an R-module M cannot exceed its flat
dimension for any multiplicative subset S of R. And if S is composed of units,
then u-S-fdr(M) = fdr(M). It is also obvious that an R-module M is u-S-flat
if and only if u-S-fdr(M) = 0.

Lemma 2.2. Let R be a ring and S a multiplicative subset of R. If A is
u-S-isomorphic to B, then u-S-fdr(A) = u-S-fdgr(B).

Proof. Let f : A — B be a u-S-isomorphism. If -+ — F, — --- — F} — Fy %
A — 0 is a u-S-resolution of A, then --- — F,, = --- = F| — Fy M B—0
is a u-S-resolution of B. So u-S-fdr(A) > u-S-fdr(B). Note that there is

a u-S-isomorphism g : B — A by Proposition 1.1. Similarly we have u-S-
fdr(B) > u-S-fdr(A). 0

Proposition 2.3. Let R be a ring and S a multiplicative subset of R. The
following statements are equivalent for an R-module M:
(1) u-S-fdr(M) < n;
(2) Torl (M, N) is u-S-torsion for all R-modules N and all k > 0;
(3) Torl, (M, N) is u-S-torsion for all R-modules N
(4) there exists s € S such that sTorf, (M, R/I) = 0 for all ideals I of R;
(5) if0=>F, —--—F — Fy— M — 0 is a u-S-exact sequence, where
Fo, Fy, ..., F,_1 are u-S-flat R-modules, then F,, is u-S-flat;
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(6) if0 > F, = - = Fy — Fy » M — 0 is a u-S-exact sequence, where
Fy, Fy, ..., F,_1 are flat R-modules, then F}, is u-S-flat;
(7) if0 > F, » -+ = F1 = Fy = M — 0 is an exact sequence, where
Fo, F1, ..., Fh_1 are u-S-flat R-modules, then F, is u-S-flat;
(8) if0 = F, —» -+ = Iy - Fy - M — 0 is an exact sequence, where
Fy, Fy, ..., F,_1 are flat R-modules, then F}, is u-S-flat
(9) there exists a u-S-exact sequence 0 = F, — -+ = F} — Fy = M — 0,
where Fy, Fy, ..., F,_1 are flat R-modules and F,, is u-S-flat;
(10) there exists an exact sequence 0 — Fp, — -+ — 1 — Fy - M — 0,
where Fy, Fy, ..., F,_1 are flat R-modules and F,, is u-S-flat;
(11) there exists an exact sequence 0 — F, — -+ — F} = Fy == M — 0,
where Fy, Fy, ..., F, are u-S-flat R-modules.

Proof. (1) = (2): We prove (2) by induction on n. For the case n = 0, we have
M is u-S-flat, and then (2) holds by [7, Theorem 3.2]. If n > 0, then there is a
u-S-exact sequence 0 — F,, — --- — F; — Fy — M — 0, where each F; is u-
S-flat for i = 0,...,n. Set Ky = Ker(Fyp — M) and Ly = Im(F; — Fp). Then
both0 - Ky - Ffy—+M —-0and 0 — F,, - F,,_1 —---— F, — Ly — 0 are
u-S-exact. Since u-S-fdr(Lo) < n —1 and Lg is u-S-isomorphic to Ky, u-S-
fdr(Ko) < n—1by Lemma 2.2. By induction, Tor? , (Ko, N) is u-S-torsion
for all u-S-torsion R-modules N and all £ > 0. It follows from Corollary 1.5
that Tory, , (M, N) is u-S-torsion.

(2) = (3), (5) = (6) = (8) and (5) = (7) = (8): Trivial.

(3) = (4): Let N = @,z R/I. Then there exists an element s € S such
that sTor ;(M,N) = 0. So s@rar Torf,,(M,R/I) = 0. Tt follows that

sTorf, | (M, R/I) = 0 for all ideals I of R.

(4) = (3): Let N be generated by {n; : i € I'}. Set Ny = 0 and N, =
(n; + i < a) for each « < T'. Then N has a continuous filtration {N, :
a < T} with No41/No = R/In41 and I, = Anng(ne + No N Rn,). Since
sTorf, | (M, R/I,) = 0 for each o < T, it is easy to verify sTor/,; (M, N,) =0
by transfinite induction on a. So sTorZ (M, N) = 0.

- )
3)=(5): Let 0> F, 2 F g =5 F, h— - 21 D R 2 M
0 be a u-S-exact sequence, where Fy, Fy,..., F,_1 are u-S-flat. Then Fj, is

u-S-flat if and only if Torf'(F,, N) is u-S-torsion for all R-modules N, if and
only if Tor¥(Im(d,,_1), N) is u-S-torsion for all R-modules N. Following these
steps, we can show F), is u-S-flat if and only if Toer(M, N) is u-S-torsion
for all R-modules N.

(10) = (11) = (1) and (10) = (9) = (1): Trivial.

(8) = (10): Let -+ — Py — Py_y "% Py —5 -+ — Py — M — 0 be
a projective resolution of M. Set F,, = Ker(d,—1). Then we have an exact
sequence 0 — F,, — P,_1 nay P,y—-+—Pp—M—0. By (8), F, is
u-S-flat. So (10) holds. O
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Corollary 2.4. Let R be a ring and S’ C S multiplicative subsets of R. Let
M be an R-module. Then u-S-fdgr(M) < S’-fdr(M).

Proof. Let N be an R-module. If T0r§+1(M, N) is uniformly S’-torsion, then
Tor[?,; (M, N) is u-S-torsion. The result follows by Proposition 2.3. O

Let R be a ring, S a multiplicative subset of R and M an R-module. For
any s € S, we denote by R, the localization of R at {s™ : n > 0} and denote
M, =M ®r R, as an Rs-module.

Corollary 2.5. Let R be a ring, S a multiplicative subset of R and M an
R-module. If u-S-fdgr(M) < n, then there exists an element s € S such that
fdr, (MG) <n.

Proof. Let M be an R-module with u-S-fdr(M) < n. Then there is an element
s € S such that sTor%, | (R/I,M) = 0 for any ideal I of R by Proposition
2.3. Let I be an ideal of Ry with I an ideal of R. Then Torfil(Rs/Is, M) =
Torf, | (R/I,M)®g Rs = 0 since sTor’?, ; (R/I, M) = 0. Hence fdg,(M;) < n.

U

Corollary 2.6. Let R be a ring and S a multiplicative subset of R. Let M be
an R-module. Then u-S-fdr(M) >fdrsMs. Moreover, if S is composed of
finite elements, then u-S-fdr(M) =fdrsMs.

Proof. Let --- — F,, —» --- = F} — Fy — M — 0 be an exact sequence with
each F; u-S-flat. By localizing at .S, we can obtain a flat resolution of Mg over
Rg as follows:

= (Fp)s— = (F1)s — (Fy)s — (M)s — 0.

So u-S-fdr(M) >fdr, Mg by Proposition 2.3. Suppose S is composed of finite
elements and fdp,Ms=n. Let 0 > F, > F,_1 = =>Fi > F —-M—=0

be an exact sequence, where Fj is flat over R for any ¢ = 0,...,n—1. Localizing
at S, we have (F,)g is flat over Rg. By [7, Proposition 3.8], F' is u-S-flat. So
u-S-fdr(M) < n by Proposition 2.3. O

Proposition 2.7. Let R be a ring and S a multiplicative subset of R. Let
0> A— B — C — 0 be a u-S-exact sequence of R-modules. Then the
following assertions hold.
(1) u-S-fdr(C) <14 max{u-S-fdr(A),u-S-fdr(B)}.
(2) If u-S-fdr(B) < u-S-fdr(C), then u-S-fdr(A) = u-S-fdr(C) -1 >
’LL-S-de(B).
Proof. The proof is similar with that of the classical case (see [5, Theorem

3.6.7]). So we omit it. O

Let p be a prime ideal of R and M an R-module. We denote u-p-fdr (M) to
be u-(R—p)-fdr(M) briefly. The next result gives a new local characterization
of flat dimension of an R-module.



THE u-S-WEAK GLOBAL DIMENSIONS OF COMMUTATIVE RINGS 105

Proposition 2.8. Let R be a ring and M an R-module. Then

fdr(M) = sup{u-p-fdr(M) : p € Spec(R)}
= sup{u-m-fdr(M) : m € Max(R)}.

Proof. Trivially, sup{u-m-fdr(M) : m € Max(R)} < sup{u-p-fdr(M) : p €
Spec(R)} < fdr(M). Suppose sup{u-m-fdr(M) : m € Max(R)} = n. For any
R-module N, there exists an element s™ € R—m such that s™Tor, , (M, N) =
0 by Proposition 2.3. Since the ideal generated by all s™ is R, we have
Torf, ;(M,N) = 0 for all R-modules N. So fdr(M) < n. Suppose sup{u-
m-fdr(M) : m € Max(R)} = co. Then for any n > 0, there exists a maximal
ideal m and an element s™ € R — m such that s‘““Torferl(M7 N) # 0 for some
R-module N. So for any n > 0, we have Torffﬂ (M, N) # 0 for some R-module
N. Thus fdr(M) = oo. So the equalities hold. O

3. On the u-S-weak global dimensions of rings

Recall that the weak global dimension w.gl.dim(R) of a ring R is the supre-
mum of flat dimensions of all R-modules. Now, we introduce the u-S-analogue
of weak global dimensions of rings R for a multiplicative subset S of R.

Definition 3.1. The u-S-weak global dimension of a ring R is defined by
u-S-w.gl.dim(R) = sup{u-S-fdr(M) : M is an R-module}.

Obviously, u-S-w.gl.dim(R) <w.gl.dim(R) for any multiplicative subset S of
R. And if S is composed of units, then u-S-w.gl.dim(R) =w.gl.dim(R). The
next result characterizes the u-S-weak global dimension of a ring R.

Proposition 3.2. Let R be a ring and S a multiplicative subset of R. The
following statements are equivalent for R:
) u-S-w.gl.dim(R) < n;
) u-S-fdr(M) <n for all R-modules M;

) Torl,, (M, N) is u-S-torsion for all R-modules M, N and all k > 0;
4) Toer(M, N) is u-S-torsion for all R-modules M, N;

) there exists an element s € S such that sTorZ (R/I,R/J) for any
ideals I and J of R.

Proof. (1) = (2) and (3) = (4): These are trivial.

(2) = (3): This follows from Proposition 2.3.

(4) = (1): Let M be an R-moduleand 0 - F,, —» --- = F} = Fy - M — 0
an exact sequence, where Fy, FY, ..., F,,_1 are flat R-modules. To complete the
proof, it suffices, by Proposition 2.3, to prove that F, is u-S-flat. Let N be an
R-module. Thus u-S-fdr(N) < n by (4). It follows from Corollary 1.5 that
Torf'(N, F,,) = Torf_H(N, M) is u-S-torsion. Thus F,, is u-S-flat.
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(4) = (5): Let M = @,z R/I and N = @, R/J. Then there exists
s € S such that a a
sTorf, | (M,N) = s @ Torf,,(R/I,R/J) = 0.
I<R,J<R
Thus sTor, (R/I,R/J) = 0 for any ideals I, .J of R.

(5) = (4): Suppose M is generated by {m; : i € I'} and N is generated
by {n; : i € A}. Set My = 0 and M, = (m; : i < «) for each a < T.
Then M has a continuous filtration {M, : o < T'} with My41/May = R/1 41
and I, = Anng(m, + My N Rmy,). Similarly, N has a continuous filtration
{Ng 8 < A} with NﬂJ’,l/N/B = R/J5+1 and Jg = AnnR(n/g + Ng N Rng).
Since sTor, | (R/I,, R/J5) = 0 for each @ < T and B < A, it is easy to verify
sTork +1(M, N) = 0 by transfinite induction on both positions of A and N. O

The following Corollaries 3.4, 3.5, 3.3 and 3.7 can be deduced by Corollaries
2.5, 2.6, 2.4 and Proposition 2.8.

Corollary 3.3. Let R be a ring and S’ C S multiplicative subsets of R. Then
u-S-w.gl.dim(R) < S"-w.gl.dim(R).

Corollary 3.4. Let R be a ring and S a multiplicative subset of R. If u-S-
w.gl.dim(R) < n, then there exists an element s € S such that w.gl.dim(Ry) <
n.

Corollary 3.5. Let R be a ring and S a multiplicative subset of R. Then u-
S-w.gl.dim(R) < w.gl.dim(Rg). Moreover, if S is composed of finite elements,
then u-S-w.gl.dim(R) =w.gl.dim(Rg).

The following example shows that the reverse inequality of Corollary 3.5
does not hold in general.

Example 3.6. Let R = k[x1,22,...,2,+1] be a polynomial ring with n + 1
indeterminates over a field k (n > 0). Set S = k[z1] — {0}. Then S is a

multiplicative subset of R and Rg = k(x1)[z2,...,Zn+1] i a polynomial ring
with n indeterminates over the field k(z1). So w.gl.dim(Rg) = n by [5, Theorem
3.8.23]. Let s € S. Then we have R; = k[x1]s[x2, ..., Tnt1]. Since k[z1] is not a

G-domain, k[z1]s is not a field (see [4, Theorem 21]). Thus w.gl.dim(k[z1]s) =
1. So w.gldim(Rs) = n+ 1 for any s € S by [5, Theorem 3.8.23] again.
Consequently u-S-w.gl.dim(R) > n + 1 by Corollary 3.4.

Let p be a prime ideal of a ring R and u-p-w.gl.dim(R) denote u-(R —
p)-w.gl.dim(R) briefly. We have a new local characterization of weak global
dimensions of commutative rings.

Corollary 3.7. Let R be a ring. Then
w.gl.dim(R) = sup{u-p-w.gl.dim(R) : p € Spec(R)}
= sup{u-m-w.gl.dim(R) : m € Max(R)}.
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The rest of this section mainly consider rings with u-S-weak global dimen-
sions at most one. Recall from [7] that a ring R is called u-S-von Neumann
regular provided that there exist s € S and r € R such that sa = ra? for any
a € R. Thus by [7, Theorem 3.11], the following result holds.

Corollary 3.8. Let R be a ring and S a multiplicative subset of R. The
following assertions are equivalent:

(1) R is a u-S-von Neumann regular ring;

(2) for any R-module M and N, there exists s € S such that sTorl(M, N)

(3) there exists s € S such that sTor{'(R/I,R/J) = 0 for any ideals I and
J of R;

(4) any R-module is u-S-flat;

(5) u-S-w.gl.dim(R) = 0.

Trivially, von Neumann regular rings are u-S-von Neumann regular, and if
aring R is a u-S-von Neumann regular ring, then Rg is von Neumann regular.
It was proved in [7, Proposition 3.17] that if the multiplicative subset S of R
is composed of non-zero-divisors, then R is u-S-von Neumann regular if and
only if R is von Neumann regular. Examples of u-S-von Neumann regular rings
that are not von Neumann regular, and a ring R for which Rg is von Neumann
regular but R is not u-S-von Neumann regular are given in [7].

Proposition 3.9. Let R be a ring and S a multiplicative subset of R. The
following assertions are equivalent:
) u-S-w.gl.dim(R) < 1;
) any submodule of u-S-flat modules is u-S-flat;
) any submodule of flat modules is u-S-flat;
4) Tor¥(M, N) is u-S-torsion for all R-modules M, N;
) there exists an element s € S such that sTors (R/I, R/J) = 0 for any
ideals I,J of R.

Proof. The equivalences follow from Proposition 3.2. (|
The following lemma can be found in [2, Chapter 1 Exercise 6.3] for integral

domains. However it is also true for any commutative ring and we give a proof
for completeness.

Lemma 3.10. Let R be a ring and I,.J ideals of R. Then Tory(R/I, R/J) =
Ker(¢), where ¢ : I® J — 1J is an R-homomorphism defined by ¢(a®@b) = ab.
Proof. Let I and J be ideals of R. Then Tors(R/I, R/J) = Torf(R/I,J).

Consider the following exact sequence: 0 — Tor®(R/I,J) — I Qg J 2,
R ®p J, where ¢ is an R-homomorphism such that ¢(a ® b) = ab. We have
Torf(R/I,R/J) = Ker(¢). 0

Trivially, a ring R with w.gl.dim(R) < 1 has a u-S-weak global dimension at
most one. The following example shows the converse does not hold generally.
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Example 3.11. Let A be a ring with w.gl.dim(A4) =1, T = A x A the direct
product of A. Set s = (1,0) € T. Then s> = s. Let R = T[z]/(sz,2?)
with z an indeterminate and S = {1, s} be a multiplicative subset of R. Then
u-S-w.gl.dim(R) = 1 but w.gl.dim(R) = oo.

Proof. Since 2 = 0 and sx = 0 in R, every element in R can uniquely be

written as r = (a,b) + (0,c)z where a,b,c € A. Let f: R — A be a ring
homomorphism defined by f((a,b) + (0,¢)x) = a. Then f makes A a module
retract of R. Let I and J be ideals of R. Let r1 = (a1,b1) + (0,c¢1)z and
ro = (ag2,b2) + (0, c2) be elements in I and J, respectively, such that 1 ® 1o €
Ker(¢), where ¢ : I ®g J — IJ is the multiplicative homomorphism. Then
rire = (ayag,bibe) + (0,b1¢2 + bacy)x = 0, and so ajag = 0 in A. By Lemma
3.10, a; ®4 a2 = 0in f(I) ®4 f(J) since w.gl.dim(A) = 1. Consequently
$2r1®@pry = sr1@rsr2 = (a1,0)@g(az,0) =0in I®J. So 32Tor§(R/I,R/J) =
0 by Lemma 3.10. It follows that u-S-w.gl.dim(R) < 1 by Proposition 3.9.
Since Rs = A has a weak global dimension 1, u-S-w.gl.dim(R) = 1 by Corollary
3.8 and [7, Corollary 3.14]. Since R is a non-reduced coherent ring, it follows
from [3, Corollary 4.2.4] that w.gl.dim(R) = co. O

4. U-S-weak global dimensions of factor rings and polynomial rings

In this section, we mainly consider the u-S-weak global dimensions of factor
rings and polynomial rings. Firstly, we give an inequality of u-S-weak global
dimensions for ring homomorphisms. Let 6 : R — T be a ring homomorphism.
Let S be a multiplicative subset of R. Then 6(S) = {6(s) : s € S} is a
multiplicative subset of T.

Lemma 4.1. Let 6 : R — T be a ring homomorphism and S a multiplicative
subset of R. Suppose L is a u-0(S)-flat T-module. Then for any R-module
X and any n >0, Tor® (X, L) is u-S-isomorphic to Tor®(X,T) @ L. Conse-
quently, u-S-fdg(L) < u-S-fdr(T).

Proof. f n =0, then X @ L= X @r (T ®@r L) = (X ®rT) ®@r L.

Ifn=1,let0 > A - P — X — 0 be an exact sequence of R-modules where
P is free. Thus we have two exact sequences of T-modules: 0 — Torf (X, T) —
ARRrT - POrT — X ®gT — 0 and 0 — Torf(X,L) - A®gr L —
P®r L - X ®g L — 0. Consider the following commutative diagram with
exact sequence:

0 0 Torf'(X, L) A®rL P®grL

T
0 — Ker(8) —= Tori(X,T) @7 L L (AQrT)®r L— (P®grT) ®7 L.
Since L is a u-6(S)-flat T-module, § is a u-0(S)-monomorphism. By Theorem

1.2, h is a u-0(S)-isomorphism over T. So h is a u-S-isomorphism over R since
T-modules are viewed as R-modules through 6. By dimension-shifting, we can
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obtain that Tor®(X, L) is u-S-isomorphic to Tor’ (X, T)® L for any R-module
X and any n > 0.

Thus for any R-module X, if Tor’*(X,T) is u-S-torsion, then Tor’(X, L) is
also u-S-torsion. Consequently, u-S-fdr(L) < u-S-fdgr(T). O
Proposition 4.2. Let 0 : R — T be a ring homomorphism and S a multiplica-
tive subset of R. Let M be an T-module. Then

u-S-fdr(M) < u-0(S)-fdr(M) + u-S-fdr(T).
Proof. Assume u-0(S)-fdr(M) =n < oco. If n =0, then M is u-0(S)-flat over
T. By Lemma 4.1, u-S-fdr(M) < n+ u-S-fdg(T).

Now we assume n > 0. Let 0 > A — F — M — 0 be an exact sequence
of T-modules, where F' is a free T-module. Then u-6(S)-fdr(A) =n —1 by
Corollary 1.5 and Proposition 2.3. By induction, u-S-fdr(4) < n — 14 u-S-
fdr(T). Note that u-S-fdg(T) = u-S-fdg(F). By Proposition 2.7, we have

u-S-fdr(M) <1+ max{u-S-fdr(F),u-S-fdr(A)}
<14n—1+4+u-S-fdg(T)
= u-0(S)-fdr(M) + u-S-fdr(T). O

Let R be a ring, I an ideal of R and S a multiplicative subset of R. Then
7w : R — R/I is a ring epimorphism and n(S) :=S={s+I € R/I:se€ S} is
naturally a multiplicative subset of R/I.

Proposition 4.3. Let R be a ring and S a multiplicative subset of R. Let
a € R be an element such that u-S-fdgr(R/aR) = 1. Written R = R/aR and
S={s+aR € R:s€S}. Then the following assertions hold.
(1) Let M be a nonzero R-module. If u-S-fdz(M) < oo, then
u-S-fdp(M) = u-S-fdm(M) + 1.
(2) If u-S-w.gl.dim(R) < oo, then
u-S-w.gl.dim(R) > u-S-w.gl.dim(R) + 1.

Proof. (1) Set u-S-fdz(M) = n. By Proposition 4.2, we have u-S-fdr(M) <
u-S-fdz(M) 4+ 1 = n + 1. Since u-S-fdz(M) = n, then there is an injective
R-module C such that Tor (M, C) is not u-S-torsion. By [5, Theorem 2.4.22],
there is an injective R-module F such that 0 - C — E — E — 0 is exact. By
[5, Proposition 3.8.12(4)], Torf, (M, E) = Tor(M,C). Thus Tort, (M, E)
is not u-S-torsion. So u-S-fdr(M) = u-S-fdg(M) + 1.

(2) Let n = u-S-w.gl.dim(R). Then there is a nonzero R-module M such
that u-S-fdg(M) = n. Thus u-S-fdr(M) =n+1 by (1). So u-S-w.gl.dim(R)
> u-S-w.gl.dim(R) + 1. O

Let R be a ring and M an R-module. Denote by R[z] the polynomial ring

with one indeterminate, where all coefficients are in R. Set M[z] = M ®g
R[z]. Then M|x] can be seen as an R[z]-module naturally. It is well-known
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w.gl.dim(R[z]) =w.gl.dim(R) (see [5, Theorem 3.8.23]). In this section, we give
a u-S-analogue of this result. Let .S be a multiplicative subset of R. Then S is
a multiplicative subset of R[x] naturally.

Lemma 4.4. Let R be a ring and S a multiplicative subset of R. Let T be an
R-module and F an R[z]-module. Then the following assertions hold.

(1) T is u-S-torsion over R if and only if T|x] is a u-S-torsion R[z]-
module.
(2) If F is u-S-flat over R[x], then F is u-S-flat over R.
Proof. (1) If sT[z] = 0 for some s € S, then trivially sT = 0. So T is u-S-
torsion over R. Suppose sT = 0 for some s € S. Then sT[z] = (sT)[z] = 0.
Thus T'[z] is a u-S-torsion R[z]-module.
(2) Suppose F is a u-S-flat R[x]-module. By [3, Theorem 1.3.11],

Torf(F, L)[z] = Torf”[w] (Fx], L[z])

is u-S-torsion. Thus there exists an element s € S such that sTorl(F, L)[z] = 0.
So sTorf*(F, L) = 0. It follows that F is a u-S-flat R-module. O

Proposition 4.5. Let R be a ring, S a multiplicative subset of R and M an
R-module. Then u-S-fdpp,)(Mx]) = u-S-fdr(M).

Proof. Assume that u-S-fdg(M) < n. Then Tor, (M, N) is u-S-torsion for
any R-module N by Proposition 2.3. Thus for any R[z]-module L,

]
Torf "} (M(z], L) = Torf,, (M, L)

is u-S-torsion for any R[z]-module L by [3, Theorem 1.3.11]. Consequently,
u-S- fd gz (M[z]) < n by Proposition 2.3.

Let 0 - F, — -+ = F1 — Fy — MJz] — 0 be an exact sequence with
each F; u-S-flat over R[x] (1 < i < n). Then it is also a u-S-flat resolu-
tion of M[z] over R by Lemma 4.4. Thus Tor[ ;(M[z], N) is u-S-torsion
for any R-module N by Proposition 2.3. It follows that sTor’,,(M[z], N) =

s @ TornJrl(M N) = 0. Thus TornH(M N) is u-S-torsion. Consequently,
u- S Jdr(M) < u-S-fdpp,)(M]x]) by Proposition 2.3 again. O

Let M be an R[x]-module. Then M can be naturally viewed as an R-module.
Define ¢ : M[z] = M by

¢(i a' @ m;) = iximi, m; € M.
i=0 i=0

And define ¢ : M[x] — M|[z] by

n n
Zx ® m;) :in"’l@mi—in@xmi, m; € M.
i=0 i=0
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Lemma 4.6 ([5, Theorem 3.8.22]). Let R be a ring. For any R[x]-module M,

0— M[z] & Mz] L M — 0
18 exact.

Theorem 4.7. Let R be a ring and S a multiplicative subset of R satisfying
u-S-fdpp) (R) = 1. Then u-S-w.gl.dim(R[x]) = u-S-w.gl.dim(R) 4 1.

Proof. Let M be an R[x]-module. Then, by Lemma 4.6, there is an exact
sequence over Rz]:

0— M[z] - M[z] - M — 0.
By Proposition 2.7 and Proposition 4.5,
(*) u—S—de(M) < U-S-de[m] (M) < 1+u—S—de[m] (M[.’L‘]) = 1—|—u-5’—de(M).

Thus if u-S-w.gl.dim(R) < oo, then u-S-w.gl.dim(R[z]) < occ.

Conversely, if u-S-w.gl.dim(R[z]) < oo, then for any R-module M, u-S-
fdr(M) = u-S-fdgj,)(M[x]) < oo by Proposition 4.5. Therefore we have u-S-
w.gl.dim(R) < oo if and only if u-S-w.gl.dim(R[z]) < co. Now we assume that
both of these are finite. Then u-S-w.gl.dim(R[z]) < u-S-w.gl.dim(R) 4+ 1 by
(¥). Since R = R[z|/xzR[z] and u-S-fdp,)(R[z]/zR[z]) = u-S-fdg;(R) = 1,
u-S-w.gl.dim(R[z]) > u-S-w.gl.dim(R) + 1 by Proposition 4.3. Consequently,
we have u-S-w.gl.dim(R[z]) = u-S-w.gl.dim(R) + 1. O

Remark 4.8. Remark that u-S-fdp[,)(R) = 1 in the following cases.
(1) S =TU(R) is consist of units.
(2) R= R1 X R2 and S = U(Rl) x 0.

We also remark that u-S-w.gl.dim(R[z]) may not be equal to u-S-w.gl.dim(R)+
1 in general. For example, let S be a multiplicative subset of R that contains
0. Then u-S-w.gl.dim(R) = u-S-w.gl.dim(R[z]) = 0.
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