THE u-S-WEAK GLOBAL DIMENSIONS OF COMMUTATIVE RINGS

Xiaolei Zhang

Abstract

In this paper, we introduce and study the u - S-weak global dimension u - S-w.gl. $\operatorname{dim}(R)$ of a commutative ring R for some multiplicative subset S of R. Moreover, the u - S-weak global dimensions of factor rings and polynomial rings are investigated.

Throughout this article, R is always a commutative ring with identity 1 and S is always a multiplicative subset of R, that is, $1 \in S$ and $s_{1} s_{2} \in S$ for any $s_{1} \in S, s_{2} \in S$. We denote by $\mathrm{U}(\mathrm{R})$ the set of all units in R. In 2002, Anderson and Dumitrescu [1] defined an S-Noetherian ring R for which any ideal of R is S-finite. Recall from [1] that an R-module M is called S-finite provided that $s M \subseteq F$ for some $s \in S$ and some finitely generated submodule F of M. An R-module T is called u-S-torsion if $s T=0$ for some $s \in S$ (see [7]). So an R-module M is S-finite if and only if M / F is u - S-torsion for some finitely generated submodule F of M. The idea derived from u - S-torsion modules is deserved to be further investigated. In [7], the author of this paper introduced the class of u - S-flat modules F for which the functor $F \otimes_{R}$ - preserves u - S exact sequences. The class of u-S-flat modules can be seen as a "uniform" generalization of that of flat modules, since an R-module F is u-S-flat if and only if $\operatorname{Tor}_{1}^{R}(F, M)$ is u-S-torsion for any R-module M (see [7, Theorem 3.2]). The class of u-S-flat modules owns the following u - S-hereditary property: let $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ be a u - S-exact sequence, if B and C are u - S-flat so is A (see [7, Proposition 3.4]). So it is worth to study the u - S-analogue of flat dimensions of R-modules and the u - S-analogue of a weak global dimension of commutative rings.

In this article, we define the u - S-flat dimension u - S - $f d_{R}(M)$ of an R-module M to be the length of the shortest u-S-flat u-S-resolution of M. We characterize u - S-flat dimensions of R-modules using the uniform torsion property of the "Tor" functors in Proposition 3.2. Besides, we obtain a new local characterization of flat dimensions of R-modules (see Corollary 3.7). The u - S-weak

Received January 25, 2022; Accepted May 25, 2022.
2020 Mathematics Subject Classification. 13D05, 13D07, 13B25.
Key words and phrases. u - S-flat module, u - S-flat dimension, u - S-weak global dimension, polynomial ring.
global dimension u - S-w.gl.dim (R) of a commutative ring R is defined to be the supremum of u - S-flat dimensions of all R-modules. A characterization of u - S-weak global dimensions is given in Proposition 3.2. Examples of rings R for which u - S-w.gl. $\operatorname{dim}(R) \neq$ w.gl. $\operatorname{dim}\left(R_{S}\right)$ can be found in Example 3.11. $U-S$-von Neumann regular rings are firstly introduced in [7] for which there exist $s \in S$ and $r \in R$ such that $s a=r a^{2}$ for any $a \in R$. By [7, Theorem 3.11], a ring R is u - S-von Neumann regular if and only if all R-modules are u-S-flat. So u - S-von Neumann regular rings are exactly commutative rings with u - S-weak global dimensions equal to 0 (see Corollary 3.8). We also study commutative rings R with u - S-w.gl. $\operatorname{dim}(R)$ at most 1 . The nontrivial example of a commutative ring R with u - S-w.gl.dim $(R) \leq 1$ but an infinite weak global dimension is given in Example 3.11. In the final section, we investigate the u - S-weak global dimensions of factor rings and polynomial rings and show that u-S-w.gl.dim $(R[x])=u$ - S-w.gl.dim $(R)+1$ for a ring R under some condition (see Theorem 4.7).

1. Preliminaries

Recall from [7] that an R-module T is called a u-S-torsion module provided that there exists an element $s \in S$ such that $s T=0$. An R-sequence $M \xrightarrow{f}$ $N \xrightarrow{g} L$ is called u-S-exact (at N) provided that there is an element $s \in S$ such that $s \operatorname{Ker}(g) \subseteq \operatorname{Im}(f)$ and $s \operatorname{Im}(f) \subseteq \operatorname{Ker}(g)$. We say a long R-sequence $\cdots \rightarrow$ $A_{n-1} \xrightarrow{f_{n}} A_{n} \xrightarrow{f_{n+1}} A_{n+1} \rightarrow \cdots$ is u - S-exact, if for any n there is an element $s \in S$ such that $s \operatorname{Ker}\left(f_{n+1}\right) \subseteq \operatorname{Im}\left(f_{n}\right)$ and $s \operatorname{Im}\left(f_{n}\right) \subseteq \operatorname{Ker}\left(f_{n+1}\right)$. A u - S-exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is called a short u - S-exact sequence. An R homomorphism $f: M \rightarrow N$ is a u-S-monomorphism (resp., u-S-epimorphism, u-S-isomorphism) provided $0 \rightarrow M \xrightarrow{f} N$ (resp., $M \xrightarrow{f} N \rightarrow 0,0 \rightarrow M \xrightarrow{f}$ $N \rightarrow 0)$ is u-S-exact. It is easy to verify an R-homomorphism $f: M \rightarrow N$ is a u-S-monomorphism (resp., u - S-epimorphism, u - S-isomorphism) if and only if $\operatorname{Ker}(f)$ (resp., $\operatorname{Coker}(f)$, both $\operatorname{Ker}(f)$ and $\operatorname{Coker}(f)$) is a u - S-torsion module.

Proposition 1.1 ([6, Lemma 2.1]). Let R be a ring and S a multiplicative subset of R. Suppose there is a u-S-isomorphism $f: M \rightarrow N$ for R-modules M and N. Then there is a u-S-isomorphism $g: N \rightarrow M$. Moreover, there is $t \in S$ such that $f \circ g=t \operatorname{Id}_{N}$ and $g \circ f=t \operatorname{Id}_{M}$.

Let R be a ring and S a multiplicative subset of R. Let M and N be R modules. We say M is u - S-isomorphic to N if there exists a u - S-isomorphism $f: M \rightarrow N$. A family \mathcal{C} of R-modules is said to be closed under u - S isomorphisms if M is u - S-isomorphic to N and M is in \mathcal{C}, then N is also in \mathcal{C}. It follows from Proposition 1.1 that the existence of u - S-isomorphisms of two R-modules is an equivalence relation. Next, we give a u - S-analogue of the Five Lemma.

Theorem 1.2 (u-S-analogue of Five Lemma). Let R be a ring and S a multiplicative subset of R. Consider the following commutative diagram with $u-S$ exact rows:

(1) If f_{B} and f_{D} are u-S-monomorphisms and f_{A} is a u-S-epimorphism, then f_{C} is a u-S-monomorphism.
(2) If f_{B} and f_{D} are u-S-epimorphisms and f_{E} is a u - S-monomorphism, then f_{C} is a u-S-epimorphism.
(3) If f_{A} is a u-S-epimorphism, f_{E} is a u-S-monomorphism, and f_{B} and f_{D} are u-S-isomorphisms, then f_{C} is a u-S-isomorphism.
(4) If f_{A}, f_{B}, f_{D} and f_{E} are all u - S-isomorphisms, then f_{C} is a u - S isomorphism.

Proof. (1) Let $x \in \operatorname{Ker}\left(f_{C}\right)$. Then $f_{D} g_{3}(x)=h_{3} f_{C}(x)=0$. Since f_{D} is a u -S-monomorphism, $s_{1} \operatorname{Ker}\left(f_{D}\right)=0$ for some $s_{1} \in S$. So $s_{1} g_{3}(x)=g_{3}\left(s_{1} x\right)=0$. Since the top row is u - S-exact, there exists $s_{2} \in S$ such that $s_{2} \operatorname{Ker}\left(g_{3}\right) \subseteq$ $\operatorname{Im}\left(g_{2}\right)$. Thus there exists $b \in B$ such that $g_{2}(b)=s_{2} s_{1} x$. Hence $h_{2} f_{B}(b)=$ $f_{C} g_{2}(b)=f_{C}\left(s_{2} s_{1} x\right)=0$. Thus there exists $s_{3} \in S$ such that $s_{3} \operatorname{Ker}\left(h_{2}\right) \subseteq$ $\operatorname{Im}\left(h_{1}\right)$. So there exists $a^{\prime} \in A^{\prime}$ such that $h_{1}\left(a^{\prime}\right)=s_{2} f_{B}(b)$. Since f_{A} is a u-S-epimorphism, there exists $s_{4} \in S$ such that $s_{4} A^{\prime} \subseteq \operatorname{Im}\left(f_{A}\right)$. So there exists $a \in A$ such that $s_{4} a^{\prime}=f_{A}(a)$. Hence $s_{4} s_{2} f_{B}(b)=s_{4} h_{1}\left(a^{\prime}\right)=h_{1}\left(f_{A}(a)\right)=$ $f_{B}\left(g_{1}(a)\right)$. So $s_{4} s_{2} b-g_{1}(a) \in \operatorname{Ker}\left(f_{B}\right)$. Since f_{B} is a u - S-monomorphism, there exists $s_{5} \in S$ such that $s_{5} \operatorname{Ker}\left(f_{B}\right)=0$. Thus $s_{5}\left(s_{4} s_{2} b-g_{1}(a)\right)=0$. So $s_{5} s_{4} s_{2} s_{2} s_{1} x=s_{5}\left(g_{2}\left(s_{4} s_{2} b\right)\right)=s_{5} g_{2}\left(g_{1}(a)\right)$. Since the top row is u - S-exact at B, there exists $s_{6} \in S$ such that $s_{6} \operatorname{Im}\left(g_{1}\right) \subseteq \operatorname{Ker}\left(g_{2}\right)$. So $s_{6} s_{5} s_{4} s_{2} s_{2} s_{1} x=$ $s_{5} g_{2}\left(s_{6} g_{1}(a)\right)=0$. Consequently, if we set $s=s_{6} s_{5} s_{4} s_{2} s_{2} s_{1}$, then $s \operatorname{Ker}\left(f_{C}\right)=$ 0 . It follows that f_{C} is a u - S-monomorphism.
(2) Let $x \in C^{\prime}$. Since f_{D} is a u - S-epimorphism, there exists $s_{1} \in S$ such that $s_{1} D^{\prime} \subseteq \operatorname{Im}\left(f_{D}\right)$. Thus there exists $d \in D$ such that $f_{D}(d)=s_{1} h_{3}(x)$. By the commutativity of the right square, we have $f_{E} g_{4}(d)=h_{4} f_{D}(d)=$ $s_{1} h_{4}\left(h_{3}(x)\right)$. Since the bottom row is u - S-exact at D^{\prime}, there exists $s_{2} \in S$ such that $s_{4} \operatorname{Im}\left(h_{3}\right) \subseteq \operatorname{Ker}\left(h_{4}\right)$. So $s_{4} f_{E}\left(g_{4}(d)\right)=s_{1} h_{4}\left(s_{4} h_{3}(x)\right)=0$. Since f_{E} is a u - S-monomorphism, there exists $s_{3} \in S$ such that $s_{3} \operatorname{Ker}\left(f_{E}\right)=0$. Thus $s_{3} s_{4} g_{4}(d)=0$. Since the top row is u-S-exact at D, there there exists $s_{5} \in S$ such that $s_{5} \operatorname{Ker}\left(g_{4}\right) \subseteq \operatorname{Im}\left(g_{3}\right)$. So there exists $c \in C$ such that $s_{5} s_{3} s_{4} d=$ $g_{3}(c)$. Hence $s_{5} s_{3} s_{4} f_{D}(d)=f_{D}\left(g_{3}(c)\right)=h_{3}\left(f_{C}(c)\right)$. Since $s_{5} s_{3} s_{4} f_{D}(d)=$ $h_{3}\left(s_{1} s_{5} s_{3} s_{4} x\right)$, we have $f_{C}(c)-s_{1} s_{5} s_{3} s_{4} x \in \operatorname{Ker}\left(h_{3}\right)$. Since the bottom row is u - S-exact at C^{\prime}, there exists $s_{6} \in S$ such that $s_{6} \operatorname{Ker}\left(h_{3}\right) \subseteq \operatorname{Im}\left(h_{2}\right)$. Thus there exists $b^{\prime} \in B^{\prime}$ such that $s_{6}\left(f_{C}(c)-s_{1} s_{5} s_{3} s_{4} x\right)=h_{2}\left(b^{\prime}\right)$. Since f_{B} is a u -S-epimorphism, there exists $s_{7} \in S$ such that $s_{7} B^{\prime} \subseteq \operatorname{Im}\left(f_{B}\right)$. So $s_{7} b^{\prime}=f_{B}(b)$ for some $b \in B$. Thus $f_{C}\left(g_{2}(b)\right)=h_{2}\left(f_{B}(b)\right)=s_{7} h_{2}\left(b^{\prime}\right)=s_{7}\left(s_{6}\left(f_{C}(c)-\right.\right.$
$\left.s_{1} s_{5} s_{3} s_{4} x\right)$). So $s_{7} s_{6} s_{1} s_{5} s_{3} s_{4} x=s_{7} s_{6} f_{C}(c)-f_{C}\left(g_{2}(b)\right)=f_{C}\left(s_{7} s_{6} c-g_{2}(b)\right) \in$ $\operatorname{Im}\left(f_{C}\right)$. Consequently, if we set $s=s_{7} s_{6} s_{1} s_{5} s_{3} s_{4}$, then $s C^{\prime} \subseteq \operatorname{Im}\left(f_{C}\right)$. It follows that f_{C} is a u - S-epimorphism.

It is easy to see (3) follows from (1) and (2), while (4) follows from (3).
Recall from [7, Definition 3.1] that an R-module F is called u - S-flat provided that for any u-S-exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, the induced sequence $0 \rightarrow A \otimes_{R} F \rightarrow B \otimes_{R} F \rightarrow C \otimes_{R} F \rightarrow 0$ is u - S-exact. It is easy to verify that the class of u - S-flat modules is closed under u - S-isomorphisms by the following result.

Lemma 1.3 ([7, Theorem 3.2]). Let R be a ring, S a multiplicative subset of R and F an R-module. The following assertions are equivalent:
(1) F is u-S-flat;
(2) for any short exact sequence $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$, the induced sequence $0 \rightarrow A \otimes_{R} F \xrightarrow{f \otimes_{R} F} B \otimes_{R} F \xrightarrow{g \otimes_{R} F} C \otimes_{R} F \rightarrow 0$ is u-S-exact;
(3) $\operatorname{Tor}_{1}^{R}(M, F)$ is u-S-torsion for any R-module M;
(4) $\operatorname{Tor}_{n}^{R}(M, F)$ is u-S-torsion for any R-module M and $n \geq 1$.

The following result says that a short u - S-exact sequence induces a long u - S-exact sequence by the functor "Tor" as the classical case.

Theorem 1.4. Let R be a ring, S a multiplicative subset of R and N an R-module. Let $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ be a u-S-exact sequence of R modules. Then for any $n \geq 1$ there is an R-homomorphism $\delta_{n}: \operatorname{Tor}_{n}^{R}(C, N) \rightarrow$ $\operatorname{Tor}_{n-1}^{R}(A, N)$ such that the induced sequence

$$
\begin{aligned}
& \quad \cdots \rightarrow \operatorname{Tor}_{n}^{R}(A, N) \rightarrow \operatorname{Tor}_{n}^{R}(B, N) \rightarrow \operatorname{Tor}_{n}^{R}(C, N) \xrightarrow{\delta_{n}} \operatorname{Tor}_{n-1}^{R}(A, N) \rightarrow \\
& \operatorname{Tor}_{n-1}^{R}(B, N) \rightarrow \cdots \rightarrow \operatorname{Tor}_{1}^{R}(C, N) \xrightarrow{\delta_{1}} A \otimes_{R} N \rightarrow B \otimes_{R} N \rightarrow C \otimes_{R} N \rightarrow 0 \\
& \text { is } u \text {-S-exact. }
\end{aligned}
$$

Proof. Since the sequence $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is u - S-exact at B, there are three exact sequences $0 \rightarrow \operatorname{Ker}(f) \xrightarrow{i_{\operatorname{Ker}(f)}} A \xrightarrow{\pi_{\operatorname{Im}(f)}} \operatorname{Im}(f) \rightarrow 0,0 \rightarrow$ $\operatorname{Ker}(g) \xrightarrow{i_{\mathrm{Ker}(g)}} B \xrightarrow{\pi_{\operatorname{Im}(g)}} \operatorname{Im}(g) \rightarrow 0$ and $0 \rightarrow \operatorname{Im}(g) \xrightarrow{i_{\operatorname{Im}(g)}} C \xrightarrow{\pi_{\operatorname{Coker}(g)}}$ $\operatorname{Coker}(g) \rightarrow 0$ with $\operatorname{Ker}(f)$ and $\operatorname{Coker}(g) u$-S-torsion. There also exists $s \in S$ such that $s \operatorname{Ker}(g) \subseteq \operatorname{Im}(f)$ and $s \operatorname{Im}(f) \subseteq \operatorname{Ker}(g)$. Denote $T=\operatorname{Ker}(f)$ and $T^{\prime}=\operatorname{Coker}(g)$.

Firstly, consider the exact sequence

$$
\operatorname{Tor}_{n+1}^{R}\left(T^{\prime}, N\right) \rightarrow \operatorname{Tor}_{n}^{R}(\operatorname{Im}(g), N) \xrightarrow{\operatorname{Tor}_{n}^{R}\left(i_{\operatorname{Im}(g)}, N\right)} \operatorname{Tor}_{n}^{R}(C, N) \rightarrow \operatorname{Tor}_{n}^{R}\left(T^{\prime}, N\right)
$$

Since T^{\prime} is u - S-torsion, $\operatorname{Tor}_{n+1}^{R}\left(T^{\prime}, N\right)$ and $\operatorname{Tor}_{n}^{R}\left(T^{\prime}, N\right)$ are u - S-torsion. Thus $\operatorname{Tor}_{n}^{R}\left(i_{\operatorname{Im}(g)}, N\right)$ is a u - S-isomorphism. So there is also a u - S-isomorphism
$h_{\operatorname{Im}(g)}^{n}: \operatorname{Tor}_{n}^{R}(C, N) \rightarrow \operatorname{Tor}_{n}^{R}(\operatorname{Im}(g), N)$ by Proposition 1.1. Consider the exact sequence:

$$
\operatorname{Tor}_{n-1}^{R}(T, N) \rightarrow \operatorname{Tor}_{n-1}^{R}(A, N) \xrightarrow{\operatorname{Tor}_{n-1}^{R}\left(\pi_{\operatorname{Im}(f)}, N\right)} \operatorname{Tor}_{n-1}^{R}(\operatorname{Im}(f), N) \rightarrow \operatorname{Tor}_{n-2}^{R}(T, N) .
$$

Since T is u - S-torsion, we have $\operatorname{Tor}_{n-1}^{R}\left(\pi_{\operatorname{Im}(f)}, N\right)$ is a u - S-isomorphism. So there is also a u - S-isomorphism $h_{\operatorname{Im}(f)}^{n-1}: \operatorname{Tor}_{n-1}^{R}(\operatorname{Im}(f), N) \rightarrow \operatorname{Tor}_{n-1}^{R}(A, N)$ by Proposition 1.1. We have two exact sequences
$\operatorname{Tor}_{n+1}^{R}\left(T_{1}, N\right) \rightarrow \operatorname{Tor}_{n}^{R}(s \operatorname{Ker}(g), N) \xrightarrow{\operatorname{Tor}_{n}^{R}\left(i_{s \operatorname{Ker}(g)}^{1}, N\right)} \operatorname{Tor}_{n}^{R}(\operatorname{Im}(f), N) \rightarrow \operatorname{Tor}_{n+1}^{R}\left(T_{1}, N\right)$
and
$\operatorname{Tor}_{n+1}^{R}\left(T_{2}, N\right) \rightarrow \operatorname{Tor}_{n}^{R}(s \operatorname{Ker}(g), N) \xrightarrow{\operatorname{Tor}_{n}^{R}\left(i_{s \operatorname{Ker}(g)}^{2}, N\right)} \operatorname{Tor}_{n}^{R}(\operatorname{Ker}(g), N) \rightarrow \operatorname{Tor}_{n+1}^{R}\left(T_{2}, N\right)$, where $T_{1}=\operatorname{Im}(f) / s \operatorname{Ker}(g)$ and $T_{2}=\operatorname{Im}(f) / s \operatorname{Im}(f)$ are u - S-torsion. So $\operatorname{Tor}_{n}^{R}\left(i_{s \operatorname{Ker}(g)}^{1}, N\right)$ and $\operatorname{Tor}_{n}^{R}\left(i_{s \operatorname{Ker}(g)}^{2}, N\right)$ are u - S-isomorphisms. Thus there is a u-S-isomorphism $h_{s \operatorname{Ker}(g)}^{n}: \operatorname{Tor}_{n}^{R}(\operatorname{Ker}(g), N) \rightarrow \operatorname{Tor}_{n}^{R}(s \operatorname{Ker}(g), N)$. Note that there is an exact sequence $\operatorname{Tor}_{n}^{R}(B, N) \xrightarrow{\operatorname{Tor}_{n}^{R}\left(\pi_{\operatorname{Im}(g)}, N\right)} \operatorname{Tor}_{n}^{R}(\operatorname{Im}(g), N) \xrightarrow{\delta_{\operatorname{Im}(g)}^{n}}$ $\operatorname{Tor}_{n-1}^{R}(\operatorname{Ker}(g), N) \xrightarrow{\operatorname{Tor}_{n-1}^{R}\left(i_{\operatorname{Ker}(g)}, N\right)} \operatorname{Tor}_{n-1}^{R}(B, N)$. Set $\delta_{n}=h_{\operatorname{Im}(g)}^{n} \circ \delta_{\operatorname{Im}(g)}^{n} \circ$ $h_{s K e r(g)}^{n} \circ \operatorname{Tor}_{n}^{R}\left(i_{s \operatorname{Ker}(g)}^{1}, N\right) \circ h_{\operatorname{Im}(f)}^{n-1}: \operatorname{Tor}_{n}^{R}(C, N) \rightarrow \operatorname{Tor}_{n-1}^{R}(A, N)$. Since $h_{\operatorname{Im}(g)}^{n}, \delta_{\operatorname{Im}(g)}^{n}, h_{s \operatorname{Ker}(g)}^{n}$ and $h_{\operatorname{Im}(f)}^{n-1}$ are u-S-isomorphisms, we have the sequence $\operatorname{Tor}_{n}^{R}(B, N) \rightarrow \operatorname{Tor}_{n}^{R}(C, N) \xrightarrow{\delta^{n}} \operatorname{Tor}_{n-1}^{R}(A, N) \rightarrow \operatorname{Tor}_{n-1}^{R}(B, N)$ is u-S-exact.

Secondly, consider the exact sequence:

$$
\operatorname{Tor}_{n+1}^{R}(T, N) \rightarrow \operatorname{Tor}_{n}^{R}(A, N) \xrightarrow{\operatorname{Tor}_{n}^{R}\left(i_{\operatorname{Im}(f)}, N\right)} \operatorname{Tor}_{n}^{R}(\operatorname{Im}(f), N) \rightarrow \operatorname{Tor}_{n}^{R}(T, N)
$$

Since T is u - S-torsion, $\operatorname{Tor}_{n}^{R}\left(i_{\operatorname{Im}(f)}, N\right)$ is a u - S-isomorphism. Consider the exact sequences:
$\operatorname{Tor}_{n+1}^{R}(\operatorname{Im}(g), N) \rightarrow \operatorname{Tor}_{n}^{R}(\operatorname{Ker}(g), N) \xrightarrow{\operatorname{Tor}_{n}^{R}\left(i_{\operatorname{Ker}(g)}, N\right)} \operatorname{Tor}_{n}^{R}(B, N) \rightarrow \operatorname{Tor}_{n}^{R}(\operatorname{Im}(g), N)$
and

$$
\operatorname{Tor}_{n+1}^{R}\left(T^{\prime}, N\right) \rightarrow \operatorname{Tor}_{n}^{R}(\operatorname{Im}(g), N) \xrightarrow{\operatorname{Tor}_{n}^{R}\left(i_{\operatorname{Im}(g)}, N\right)} \operatorname{Tor}_{n}^{R}(C, N) \rightarrow \operatorname{Tor}_{n}^{R}\left(T^{\prime}, N\right) .
$$

Since T^{\prime} is u-S-torsion, we have $\operatorname{Tor}_{n}^{R}\left(i_{\operatorname{Im}(g)}, N\right)$ is a u - S-isomorphism. Since $\operatorname{Tor}_{n}^{R}\left(i_{s \operatorname{Ker}(g)}^{1}, N\right)$ and $\operatorname{Tor}_{n}^{R}\left(i_{s \operatorname{Ker}(g)}^{2}, N\right)$ are u - S-isomorphisms as above,

$$
\operatorname{Tor}_{n}^{R}(A, N) \rightarrow \operatorname{Tor}_{n}^{R}(B, N) \rightarrow \operatorname{Tor}_{n}^{R}(C, N)
$$

is u - S-exact at $\operatorname{Tor}_{n}^{R}(B, N)$.
Continue by the above method, we have a u - S-exact sequence:

$$
\begin{gathered}
\cdots \rightarrow \operatorname{Tor}_{n}^{R}(A, N) \rightarrow \operatorname{Tor}_{n}^{R}(B, N) \rightarrow \operatorname{Tor}_{n}^{R}(C, N) \xrightarrow{\delta_{n}} \operatorname{Tor}_{n-1}^{R}(A, N) \rightarrow \\
\operatorname{Tor}_{n-1}^{R}(B, N) \rightarrow \cdots \rightarrow \operatorname{Tor}_{1}^{R}(C, N) \xrightarrow{\delta_{1}} A \otimes_{R} N \rightarrow B \otimes_{R} N \rightarrow C \otimes_{R} N \rightarrow 0 .
\end{gathered}
$$

Corollary 1.5. Let R be a ring, S a multiplicative subset of R and N an R module. Suppose $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is a u-S-exact sequence of R-modules where B is u-S-flat. Then $\operatorname{Tor}_{n+1}^{R}(C, N)$ is u-S-isomorphic to $\operatorname{Tor}_{n}^{R}(A, N)$ for any $n \geq 0$. Consequently, $\operatorname{Tor}_{n+1}^{R}(C, N)$ is u - S-torsion if and only if $\operatorname{Tor}_{n}^{R}(A, N)$ is u-S-torsion for any $n \geq 0$.

Proof. It follows from Lemma 1.3 and Theorem 1.4.

2. On the \boldsymbol{u} - \boldsymbol{S}-flat dimensions of modules

Let R be a ring. The flat dimension of an R-module M is defined as the shortest flat resolution of M. We now introduce the notion of a u - S-flat dimension of an R-module as follows.

Definition 2.1. Let R be a ring, S a multiplicative subset of R and M an R-module. We write $u-S$ - $f d_{R}(M) \leq n(u-S$ - $f d$ abbreviates a uniformly S-flat dimension) if there exists a u-S-exact sequence of R-modules

$$
0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

where each F_{i} is u-S-flat for $i=0, \ldots, n$. The u-S-exact sequence (\diamond) is said to be a u-S-flat u-S-resolution of length n of M. If such a finite u - S-flat u -S-resolution does not exist, then we say $u-S-f d_{R}(M)=\infty$; otherwise, define u - S - $f d_{R}(M)=n$ if n is the length of the shortest u - S-flat u - S-resolution of M.

Trivially, the u-S-flat dimension of an R-module M cannot exceed its flat dimension for any multiplicative subset S of R. And if S is composed of units, then u - S - $f d_{R}(M)=f d_{R}(M)$. It is also obvious that an R-module M is u - S-flat if and only if $u-S-f d_{R}(M)=0$.
Lemma 2.2. Let R be a ring and S a multiplicative subset of R. If A is u-S-isomorphic to B, then $u-S-f d_{R}(A)=u-S$ - $f d_{R}(B)$.

Proof. Let $f: A \rightarrow B$ be a u - S-isomorphism. If $\cdots \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \xrightarrow{g}$ $A \rightarrow 0$ is a u-S-resolution of A, then $\cdots \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \xrightarrow{f \circ g} B \rightarrow 0$ is a u-S-resolution of B. So $u-S-f d_{R}(A) \geq u$ - S - $f d_{R}(B)$. Note that there is a u - S-isomorphism $g: B \rightarrow A$ by Proposition 1.1. Similarly we have u - S $f d_{R}(B) \geq u-S-f d_{R}(A)$.
Proposition 2.3. Let R be a ring and S a multiplicative subset of R. The following statements are equivalent for an R-module M :
(1) $u-S-f d_{R}(M) \leq n$;
(2) $\operatorname{Tor}_{n+k}^{R}(M, N)$ is u-S-torsion for all R-modules N and all $k>0$;
(3) $\operatorname{Tor}_{n+1}^{R}(M, N)$ is u - S-torsion for all R-modules N;
(4) there exists $s \in S$ such that $s \operatorname{Tor}_{n+1}^{R}(M, R / I)=0$ for all ideals I of R;
(5) if $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ is a u-S-exact sequence, where $F_{0}, F_{1}, \ldots, F_{n-1}$ are u - S-flat R-modules, then F_{n} is u - S-flat;
(6) if $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ is a u-S-exact sequence, where $F_{0}, F_{1}, \ldots, F_{n-1}$ are flat R-modules, then F_{n} is u - S-flat;
(7) if $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ is an exact sequence, where $F_{0}, F_{1}, \ldots, F_{n-1}$ are u - S-flat R-modules, then F_{n} is u - S-flat;
(8) if $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ is an exact sequence, where $F_{0}, F_{1}, \ldots, F_{n-1}$ are flat R-modules, then F_{n} is u - S-flat;
(9) there exists a u-S-exact sequence $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$, where $F_{0}, F_{1}, \ldots, F_{n-1}$ are flat R-modules and F_{n} is u-S-flat;
(10) there exists an exact sequence $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$, where $F_{0}, F_{1}, \ldots, F_{n-1}$ are flat R-modules and F_{n} is u - S-flat;
(11) there exists an exact sequence $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$, where $F_{0}, F_{1}, \ldots, F_{n}$ are u - S-flat R-modules.
Proof. (1) $\Rightarrow(2)$: We prove (2) by induction on n. For the case $n=0$, we have M is u - S-flat, and then (2) holds by [7, Theorem 3.2]. If $n>0$, then there is a u-S-exact sequence $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$, where each F_{i} is u -S-flat for $i=0, \ldots, n$. Set $K_{0}=\operatorname{Ker}\left(F_{0} \rightarrow M\right)$ and $L_{0}=\operatorname{Im}\left(F_{1} \rightarrow F_{0}\right)$. Then both $0 \rightarrow K_{0} \rightarrow F_{0} \rightarrow M \rightarrow 0$ and $0 \rightarrow F_{n} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow L_{0} \rightarrow 0$ are u-S-exact. Since u - S - $f d_{R}\left(L_{0}\right) \leq n-1$ and L_{0} is u-S-isomorphic to K_{0}, u - S $f d_{R}\left(K_{0}\right) \leq n-1$ by Lemma 2.2. By induction, $\operatorname{Tor}_{n-1+k}^{R}\left(K_{0}, N\right)$ is u - S-torsion for all u - S-torsion R-modules N and all $k>0$. It follows from Corollary 1.5 that $\operatorname{Tor}_{n+k}^{R}(M, N)$ is u - S-torsion.
$(2) \Rightarrow(3),(5) \Rightarrow(6) \Rightarrow(8)$ and $(5) \Rightarrow(7) \Rightarrow(8)$: Trivial.
(3) \Rightarrow (4): Let $N=\bigoplus_{I \unlhd R} R / I$. Then there exists an element $s \in S$ such that $s \operatorname{Tor}_{n+1}^{R}(M, N)=0$. So $s \bigoplus_{I \unlhd R} \operatorname{Tor}_{n+1}^{R}(M, R / I)=0$. It follows that $s \operatorname{Tor}_{n+1}^{R}(M, R / I)=0$ for all ideals I of R.
(4) $\Rightarrow(3)$: Let N be generated by $\left\{n_{i}: i \in \Gamma\right\}$. Set $N_{0}=0$ and $N_{\alpha}=$ $\left\langle n_{i}: i<\alpha\right\rangle$ for each $\alpha \leq \Gamma$. Then N has a continuous filtration $\left\{N_{\alpha}\right.$: $\alpha \leq \Gamma\}$ with $N_{\alpha+1} / N_{\alpha} \cong R / I_{\alpha+1}$ and $I_{\alpha}=\operatorname{Ann}_{R}\left(n_{\alpha}+N_{\alpha} \cap R n_{\alpha}\right)$. Since $s \operatorname{Tor}_{n+1}^{R}\left(M, R / I_{\alpha}\right)=0$ for each $\alpha \leq \Gamma$, it is easy to verify $s \operatorname{Tor}_{n+1}^{R}\left(M, N_{\alpha}\right)=0$ by transfinite induction on α. So $s \operatorname{Tor}_{n+1}^{R}(M, N)=0$.
$(3) \Rightarrow(5):$ Let $0 \rightarrow F_{n} \xrightarrow{d_{n}} F_{n-1} \xrightarrow{d_{n-1}} F_{n-2} \rightarrow \cdots \xrightarrow{d_{2}} F_{1} \xrightarrow{d_{1}} F_{0} \xrightarrow{d_{0}} M \rightarrow$ 0 be a u-S-exact sequence, where $F_{0}, F_{1}, \ldots, F_{n-1}$ are u - S-flat. Then F_{n} is u-S-flat if and only if $\operatorname{Tor}_{1}^{R}\left(F_{n}, N\right)$ is u - S-torsion for all R-modules N, if and only if $\operatorname{Tor}_{2}^{R}\left(\operatorname{Im}\left(d_{n-1}\right), N\right)$ is u - S-torsion for all R-modules N. Following these steps, we can show F_{n} is u-S-flat if and only if $\operatorname{Tor}_{n+1}^{R}(M, N)$ is u - S-torsion for all R-modules N.
$(10) \Rightarrow(11) \Rightarrow(1)$ and $(10) \Rightarrow(9) \Rightarrow(1)$: Trivial.
$(8) \Rightarrow(10):$ Let $\cdots \rightarrow P_{n} \rightarrow P_{n-1} \xrightarrow{d_{n-1}} P_{n-2} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0$ be a projective resolution of M. Set $F_{n}=\operatorname{Ker}\left(d_{n-1}\right)$. Then we have an exact sequence $0 \rightarrow F_{n} \rightarrow P_{n-1} \xrightarrow{d_{n-1}} P_{n-2} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0$. By (8), F_{n} is u - S-flat. So (10) holds.

Corollary 2.4. Let R be a ring and $S^{\prime} \subseteq S$ multiplicative subsets of R. Let M be an R-module. Then $u-S-f d_{R}(M) \leq S^{\prime}-f d_{R}(M)$.
Proof. Let N be an R-module. If $\operatorname{Tor}_{n+1}^{R}(M, N)$ is uniformly S^{\prime}-torsion, then $\operatorname{Tor}_{n+1}^{R}(M, N)$ is u - S-torsion. The result follows by Proposition 2.3.

Let R be a ring, S a multiplicative subset of R and M an R-module. For any $s \in S$, we denote by R_{s} the localization of R at $\left\{s^{n}: n \geq 0\right\}$ and denote $M_{s}=M \otimes_{R} R_{s}$ as an R_{s}-module.

Corollary 2.5. Let R be a ring, S a multiplicative subset of R and M an R-module. If $u-S-f d_{R}(M) \leq n$, then there exists an element $s \in S$ such that $f d_{R_{s}}\left(M_{s}\right) \leq n$.

Proof. Let M be an R-module with $u-S-f d_{R}(M) \leq n$. Then there is an element $s \in S$ such that $s \operatorname{Tor}_{n+1}^{R}(R / I, M)=0$ for any ideal I of R by Proposition 2.3. Let I_{s} be an ideal of R_{s} with I an ideal of R. Then $\operatorname{Tor}_{n+1}^{R_{s}}\left(R_{s} / I_{s}, M_{s}\right) \cong$ $\operatorname{Tor}_{n+1}^{R}(R / I, M) \otimes_{R} R_{s}=0$ since $s \operatorname{Tor}_{n+1}^{R}(R / I, M)=0$. Hence $f d_{R_{s}}\left(M_{s}\right) \leq n$.

Corollary 2.6. Let R be a ring and S a multiplicative subset of R. Let M be an R-module. Then $u-S-f d_{R}(M) \geq f d_{R_{S}} M_{S}$. Moreover, if S is composed of finite elements, then $u-S-f d_{R}(M)=f d_{R_{S}} M_{S}$.
Proof. Let $\cdots \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ be an exact sequence with each $F_{i} u$-S-flat. By localizing at S, we can obtain a flat resolution of M_{S} over R_{S} as follows:

$$
\rightarrow\left(F_{n}\right)_{S} \rightarrow \cdots \rightarrow\left(F_{1}\right)_{S} \rightarrow\left(F_{0}\right)_{S} \rightarrow(M)_{S} \rightarrow 0
$$

So $u-S-f d_{R}(M) \geq f d_{R_{S}} M_{S}$ by Proposition 2.3. Suppose S is composed of finite elements and $f d_{R_{S}} M_{S}=n$. Let $0 \rightarrow F_{n} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ be an exact sequence, where F_{i} is flat over R for any $i=0, \ldots, n-1$. Localizing at S, we have $\left(F_{n}\right)_{S}$ is flat over R_{S}. By [7, Proposition 3.8], F is u - S-flat. So $u-S-f d_{R}(M) \leq n$ by Proposition 2.3.

Proposition 2.7. Let R be a ring and S a multiplicative subset of R. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a u-S-exact sequence of R-modules. Then the following assertions hold.
(1) $u-S-f d_{R}(C) \leq 1+\max \left\{u-S-f d_{R}(A), u-S-f d_{R}(B)\right\}$.
(2) If $u-S-f d_{R}(B)<u-S-f d_{R}(C)$, then $u-S-f d_{R}(A)=u-S-f d_{R}(C)-1>$ $u-S-f d_{R}(B)$.
Proof. The proof is similar with that of the classical case (see [5, Theorem 3.6.7]). So we omit it.

Let \mathfrak{p} be a prime ideal of R and M an R-module. We denote u - $\mathfrak{p}-f d_{R}(M)$ to be $u-(R-\mathfrak{p})-f d_{R}(M)$ briefly. The next result gives a new local characterization of flat dimension of an R-module.

Proposition 2.8. Let R be a ring and M an R-module. Then

$$
\begin{aligned}
f d_{R}(M) & =\sup \left\{u-\mathfrak{p}-f d_{R}(M): \mathfrak{p} \in \operatorname{Spec}(R)\right\} \\
& =\sup \left\{u-\mathfrak{m}-f d_{R}(M): \mathfrak{m} \in \operatorname{Max}(R)\right\}
\end{aligned}
$$

Proof. Trivially, $\sup \left\{u-\mathfrak{m}-f d_{R}(M): \mathfrak{m} \in \operatorname{Max}(R)\right\} \leq \sup \left\{u-\mathfrak{p}-f d_{R}(M): \mathfrak{p} \in\right.$ $\operatorname{Spec}(R)\} \leq f d_{R}(M)$. Suppose $\sup \left\{u-\mathfrak{m}-f d_{R}(M): \mathfrak{m} \in \operatorname{Max}(R)\right\}=n$. For any R-module N, there exists an element $s^{\mathfrak{m}} \in R-\mathfrak{m}$ such that $s^{\mathfrak{m}} \operatorname{Tor}_{n+1}^{R}(M, N)=$ 0 by Proposition 2.3. Since the ideal generated by all $s^{\mathfrak{m}}$ is R, we have $\operatorname{Tor}_{n+1}^{R}(M, N)=0$ for all R-modules N. So $f d_{R}(M) \leq n$. Suppose $\sup \{u$ -$\left.\mathfrak{m}-f d_{R}(M): \mathfrak{m} \in \operatorname{Max}(R)\right\}=\infty$. Then for any $n \geq 0$, there exists a maximal ideal \mathfrak{m} and an element $s^{\mathfrak{m}} \in R-\mathfrak{m}$ such that $s^{\mathfrak{m}} \operatorname{Tor}_{n+1}^{R}(M, N) \neq 0$ for some R-module N. So for any $n \geq 0$, we have $\operatorname{Tor}_{n+1}^{R}(M, N) \neq 0$ for some R-module N. Thus $f d_{R}(M)=\infty$. So the equalities hold.

3. On the u-S-weak global dimensions of rings

Recall that the weak global dimension w.gl. $\operatorname{dim}(R)$ of a ring R is the supremum of flat dimensions of all R-modules. Now, we introduce the u - S-analogue of weak global dimensions of rings R for a multiplicative subset S of R.

Definition 3.1. The u - S-weak global dimension of a ring R is defined by

$$
u-S \text {-w.gl.dim }(R)=\sup \left\{u-S-f d_{R}(M): M \text { is an } R \text {-module }\right\}
$$

Obviously, u - S-w.gl. $\operatorname{dim}(R) \leq \mathrm{w} . \mathrm{gl} \cdot \operatorname{dim}(R)$ for any multiplicative subset S of R. And if S is composed of units, then u - S-w.gl. $\operatorname{dim}(R)=\mathrm{w} \cdot \mathrm{gl} \cdot \operatorname{dim}(R)$. The next result characterizes the u - S-weak global dimension of a ring R.

Proposition 3.2. Let R be a ring and S a multiplicative subset of R. The following statements are equivalent for R :
(1) u-S-w.gl.dim $(R) \leq n$;
(2) $u-S-f d_{R}(M) \leq n$ for all R-modules M;
(3) $\operatorname{Tor}_{n+k}^{R}(M, N)$ is u-S-torsion for all R-modules M, N and all $k>0$;
(4) $\operatorname{Tor}_{n+1}^{R}(M, N)$ is u-S-torsion for all R-modules M, N;
(5) there exists an element $s \in S$ such that $s \operatorname{Tor}_{n+1}^{R}(R / I, R / J)$ for any ideals I and J of R.

Proof. (1) $\Rightarrow(2)$ and $(3) \Rightarrow(4)$: These are trivial.
$(2) \Rightarrow(3)$: This follows from Proposition 2.3.
$(4) \Rightarrow(1)$: Let M be an R-module and $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ an exact sequence, where $F_{0}, F_{1}, \ldots, F_{n-1}$ are flat R-modules. To complete the proof, it suffices, by Proposition 2.3, to prove that F_{n} is u - S-flat. Let N be an R-module. Thus $u-S-f d_{R}(N) \leq n$ by (4). It follows from Corollary 1.5 that $\operatorname{Tor}_{1}^{R}\left(N, F_{n}\right) \cong \operatorname{Tor}_{n+1}^{R}(N, M)$ is u-S-torsion. Thus F_{n} is u - S-flat.
(4) \Rightarrow (5): Let $M=\bigoplus_{I \unlhd R} R / I$ and $N=\bigoplus_{J \unlhd R} R / J$. Then there exists $s \in S$ such that

$$
s \operatorname{Tor}_{n+1}^{R}(M, N)=s \bigoplus_{I \unlhd R, J \unlhd R} \operatorname{Tor}_{n+1}^{R}(R / I, R / J)=0 .
$$

Thus $s \operatorname{Tor}_{n+1}^{R}(R / I, R / J)=0$ for any ideals I, J of R.
$(5) \Rightarrow(4)$: Suppose M is generated by $\left\{m_{i}: i \in \Gamma\right\}$ and N is generated by $\left\{n_{i}: i \in \Lambda\right\}$. Set $M_{0}=0$ and $M_{\alpha}=\left\langle m_{i}: i<\alpha\right\rangle$ for each $\alpha \leq \Gamma$. Then M has a continuous filtration $\left\{M_{\alpha}: \alpha \leq \Gamma\right\}$ with $M_{\alpha+1} / M_{\alpha} \cong R / I_{\alpha+1}$ and $I_{\alpha}=\operatorname{Ann}_{R}\left(m_{\alpha}+M_{\alpha} \cap R m_{\alpha}\right)$. Similarly, N has a continuous filtration $\left\{N_{\beta}: \beta \leq \Lambda\right\}$ with $N_{\beta+1} / N_{\beta} \cong R / J_{\beta+1}$ and $J_{\beta}=\operatorname{Ann}_{R}\left(n_{\beta}+N_{\beta} \cap R n_{\beta}\right)$. Since $s \operatorname{Tor}_{n+1}^{R}\left(R / I_{\alpha}, R / J_{\beta}\right)=0$ for each $\alpha \leq \Gamma$ and $\beta \leq \Lambda$, it is easy to verify $s \operatorname{Tor}_{n+1}^{R}(M, N)=0$ by transfinite induction on both positions of M and N.

The following Corollaries 3.4, 3.5, 3.3 and 3.7 can be deduced by Corollaries 2.5, 2.6, 2.4 and Proposition 2.8.

Corollary 3.3. Let R be a ring and $S^{\prime} \subseteq S$ multiplicative subsets of R. Then $u-S$-w.gl. $\operatorname{dim}(R) \leq S^{\prime}-w . g l . \operatorname{dim}(R)$.

Corollary 3.4. Let R be a ring and S a multiplicative subset of R. If $u-S-$ $w . g l . \operatorname{dim}(R) \leq n$, then there exists an element $s \in S$ such that w.gl.dim $\left(R_{s}\right) \leq$ n.

Corollary 3.5. Let R be a ring and S a multiplicative subset of R. Then u -S-w.gl. $\operatorname{dim}(R) \leq w . g l . \operatorname{dim}\left(R_{S}\right)$. Moreover, if S is composed of finite elements, then u-S-w.gl.dim $(R)=w . g l . \operatorname{dim}\left(R_{S}\right)$.

The following example shows that the reverse inequality of Corollary 3.5 does not hold in general.

Example 3.6. Let $R=k\left[x_{1}, x_{2}, \ldots, x_{n+1}\right]$ be a polynomial ring with $n+1$ indeterminates over a field $k(n \geq 0)$. Set $S=k\left[x_{1}\right]-\{0\}$. Then S is a multiplicative subset of R and $R_{S}=k\left(x_{1}\right)\left[x_{2}, \ldots, x_{n+1}\right]$ is a polynomial ring with n indeterminates over the field $k\left(x_{1}\right)$. So w.gl.dim $\left(R_{S}\right)=n$ by [5 , Theorem 3.8.23]. Let $s \in S$. Then we have $R_{s}=k\left[x_{1}\right]_{s}\left[x_{2}, \ldots, x_{n+1}\right]$. Since $k\left[x_{1}\right]$ is not a G-domain, $k\left[x_{1}\right]_{s}$ is not a field (see [4, Theorem 21]). Thus w.gl.dim $\left(k\left[x_{1}\right]_{s}\right)=$ 1. So w.gl.dim $\left(R_{s}\right)=n+1$ for any $s \in S$ by [5, Theorem 3.8.23] again. Consequently u - S-w.gl. $\operatorname{dim}(R) \geq n+1$ by Corollary 3.4.

Let \mathfrak{p} be a prime ideal of a ring R and u-p-w.gl. $\operatorname{dim}(R)$ denote $u-(R-$ $\mathfrak{p})$-w.gl.dim (R) briefly. We have a new local characterization of weak global dimensions of commutative rings.

Corollary 3.7. Let R be a ring. Then

$$
\begin{aligned}
w \cdot g l \cdot \operatorname{dim}(R) & =\sup \{u-\mathfrak{p}-w \cdot g l . \operatorname{dim}(R): \mathfrak{p} \in \operatorname{Spec}(R)\} \\
& =\sup \{u-\mathfrak{m}-w \cdot g l \cdot \operatorname{dim}(R): \mathfrak{m} \in \operatorname{Max}(R)\} .
\end{aligned}
$$

The rest of this section mainly consider rings with u - S-weak global dimensions at most one. Recall from [7] that a ring R is called u - S-von Neumann regular provided that there exist $s \in S$ and $r \in R$ such that $s a=r a^{2}$ for any $a \in R$. Thus by [7, Theorem 3.11], the following result holds.

Corollary 3.8. Let R be a ring and S a multiplicative subset of R. The following assertions are equivalent:
(1) R is a u-S-von Neumann regular ring;
(2) for any R-module M and N, there exists $s \in S$ such that $s \operatorname{Tor}_{1}^{R}(M, N)$ $=0$;
(3) there exists $s \in S$ such that $s \operatorname{Tor}_{1}^{R}(R / I, R / J)=0$ for any ideals I and J of R;
(4) any R-module is u - S-flat;
(5) u-S-w.gl. $\operatorname{dim}(R)=0$.

Trivially, von Neumann regular rings are u - S-von Neumann regular, and if a ring R is a u - S-von Neumann regular ring, then R_{S} is von Neumann regular. It was proved in [7, Proposition 3.17] that if the multiplicative subset S of R is composed of non-zero-divisors, then R is $u-S$-von Neumann regular if and only if R is von Neumann regular. Examples of u - S-von Neumann regular rings that are not von Neumann regular, and a ring R for which R_{S} is von Neumann regular but R is not u - S-von Neumann regular are given in [7].
Proposition 3.9. Let R be a ring and S a multiplicative subset of R. The following assertions are equivalent:
(1) u-S-w.gl. $\operatorname{dim}(R) \leq 1$;
(2) any submodule of u-S-flat modules is u-S-flat;
(3) any submodule of flat modules is u-S-flat;
(4) $\operatorname{Tor}_{2}^{R}(M, N)$ is u-S-torsion for all R-modules M, N;
(5) there exists an element $s \in S$ such that $s \operatorname{Tor}_{2}^{R}(R / I, R / J)=0$ for any ideals I, J of R.
Proof. The equivalences follow from Proposition 3.2.
The following lemma can be found in [2, Chapter 1 Exercise 6.3] for integral domains. However it is also true for any commutative ring and we give a proof for completeness.
Lemma 3.10. Let R be a ring and I, J ideals of R. Then $\operatorname{Tor}_{2}^{R}(R / I, R / J) \cong$ $\operatorname{Ker}(\phi)$, where $\phi: I \otimes J \rightarrow I J$ is an R-homomorphism defined by $\phi(a \otimes b)=a b$.
Proof. Let I and J be ideals of R. Then $\operatorname{Tor}_{2}^{R}(R / I, R / J) \cong \operatorname{Tor}_{1}^{R}(R / I, J)$. Consider the following exact sequence: $0 \rightarrow \operatorname{Tor}_{1}^{R}(R / I, J) \rightarrow I \otimes_{R} J \xrightarrow{\phi}$ $R \otimes_{R} J$, where ϕ is an R-homomorphism such that $\phi(a \otimes b)=a b$. We have $\operatorname{Tor}_{2}^{R}(R / I, R / J) \cong \operatorname{Ker}(\phi)$.

Trivially, a ring R with w.gl. $\operatorname{dim}(R) \leq 1$ has a u - S-weak global dimension at most one. The following example shows the converse does not hold generally.

Example 3.11. Let A be a ring with w.gl. $\operatorname{dim}(A)=1, T=A \times A$ the direct product of A. Set $s=(1,0) \in T$. Then $s^{2}=s$. Let $R=T[x] /\left\langle s x, x^{2}\right\rangle$ with x an indeterminate and $S=\{1, s\}$ be a multiplicative subset of R. Then u - S-w.gl.dim $(R)=1$ but w.gl. $\cdot \operatorname{dim}(R)=\infty$.

Proof. Since $x^{2}=0$ and $s x=0$ in R, every element in R can uniquely be written as $r=(a, b)+(0, c) x$ where $a, b, c \in A$. Let $f: R \rightarrow A$ be a ring homomorphism defined by $f((a, b)+(0, c) x)=a$. Then f makes A a module retract of R. Let I and J be ideals of R. Let $r_{1}=\left(a_{1}, b_{1}\right)+\left(0, c_{1}\right) x$ and $r_{2}=\left(a_{2}, b_{2}\right)+\left(0, c_{2}\right)$ be elements in I and J, respectively, such that $r_{1} \otimes r_{2} \in$ $\operatorname{Ker}(\phi)$, where $\phi: I \otimes_{R} J \rightarrow I J$ is the multiplicative homomorphism. Then $r_{1} r_{2}=\left(a_{1} a_{2}, b_{1} b_{2}\right)+\left(0, b_{1} c_{2}+b_{2} c_{1}\right) x=0$, and so $a_{1} a_{2}=0$ in A. By Lemma 3.10, $a_{1} \otimes_{A} a_{2}=0$ in $f(I) \otimes_{A} f(J)$ since w.gl. $\operatorname{dim}(A)=1$. Consequently $s^{2} r_{1} \otimes_{R} r_{2}=s r_{1} \otimes_{R} s r_{2}=\left(a_{1}, 0\right) \otimes_{R}\left(a_{2}, 0\right)=0$ in $I \otimes J . \operatorname{So} s^{2} \operatorname{Tor}_{2}^{R}(R / I, R / J)=$ 0 by Lemma 3.10. It follows that u-S-w.gl. $\operatorname{dim}(R) \leq 1$ by Proposition 3.9. Since $R_{S} \cong A$ has a weak global dimension $1, u$-S-w.gl. $\operatorname{dim}(R)=1$ by Corollary 3.8 and [7, Corollary 3.14]. Since R is a non-reduced coherent ring, it follows from [3, Corollary 4.2.4] that w.gl. $\operatorname{dim}(R)=\infty$.

4. $U-S$-weak global dimensions of factor rings and polynomial rings

In this section, we mainly consider the u - S-weak global dimensions of factor rings and polynomial rings. Firstly, we give an inequality of u - S-weak global dimensions for ring homomorphisms. Let $\theta: R \rightarrow T$ be a ring homomorphism. Let S be a multiplicative subset of R. Then $\theta(S)=\{\theta(s): s \in S\}$ is a multiplicative subset of T.

Lemma 4.1. Let $\theta: R \rightarrow T$ be a ring homomorphism and S a multiplicative subset of R. Suppose L is a u- $\theta(S)$-flat T-module. Then for any R-module X and any $n \geq 0, \operatorname{Tor}_{n}^{R}(X, L)$ is u-S-isomorphic to $\operatorname{Tor}_{n}^{R}(X, T) \otimes_{T}$ L. Consequently, $u-S-f d_{R}(L) \leq u-S-f d_{R}(T)$.
Proof. If $n=0$, then $X \otimes_{R} L \cong X \otimes_{R}\left(T \otimes_{T} L\right) \cong\left(X \otimes_{R} T\right) \otimes_{T} L$.
If $n=1$, let $0 \rightarrow A \rightarrow P \rightarrow X \rightarrow 0$ be an exact sequence of R-modules where P is free. Thus we have two exact sequences of T-modules: $0 \rightarrow \operatorname{Tor}_{1}^{R}(X, T) \rightarrow$ $A \otimes_{R} T \rightarrow P \otimes_{R} T \rightarrow X \otimes_{R} T \rightarrow 0$ and $0 \rightarrow \operatorname{Tor}_{1}^{R}(X, L) \rightarrow A \otimes_{R} L \rightarrow$ $P \otimes_{R} L \rightarrow X \otimes_{R} L \rightarrow 0$. Consider the following commutative diagram with exact sequence:

Since L is a $u-\theta(S)$-flat T-module, δ is a $u-\theta(S)$-monomorphism. By Theorem $1.2, h$ is a $u-\theta(S)$-isomorphism over T. So h is a u - S-isomorphism over R since T-modules are viewed as R-modules through θ. By dimension-shifting, we can
obtain that $\operatorname{Tor}_{n}^{R}(X, L)$ is u - S-isomorphic to $\operatorname{Tor}_{n}^{R}(X, T) \otimes_{T} L$ for any R-module X and any $n \geq 0$.

Thus for any R-module X, if $\operatorname{Tor}_{n}^{R}(X, T)$ is u - S-torsion, then $\operatorname{Tor}_{n}^{R}(X, L)$ is also u-S-torsion. Consequently, $u-S-f d_{R}(L) \leq u$ - S - $f d_{R}(T)$.

Proposition 4.2. Let $\theta: R \rightarrow T$ be a ring homomorphism and S a multiplicative subset of R. Let M be an T-module. Then

$$
u-S-f d_{R}(M) \leq u-\theta(S)-f d_{T}(M)+u-S-f d_{R}(T)
$$

Proof. Assume $u-\theta(S)-f d_{T}(M)=n<\infty$. If $n=0$, then M is $u-\theta(S)$-flat over T. By Lemma 4.1, $u-S-f d_{R}(M) \leq n+u-S-f d_{R}(T)$.

Now we assume $n>0$. Let $0 \rightarrow A \rightarrow F \rightarrow M \rightarrow 0$ be an exact sequence of T-modules, where F is a free T-module. Then $u-\theta(S)-f d_{T}(A)=n-1$ by Corollary 1.5 and Proposition 2.3. By induction, $u-S-f d_{R}(A) \leq n-1+u-S$ $f d_{R}(T)$. Note that $u-S-f d_{R}(T)=u-S-f d_{R}(F)$. By Proposition 2.7, we have

$$
\begin{aligned}
u-S-f d_{R}(M) & \leq 1+\max \left\{u-S-f d_{R}(F), u-S-f d_{R}(A)\right\} \\
& \leq 1+n-1+u-S-f d_{R}(T) \\
& =u-\theta(S)-f d_{T}(M)+u-S-f d_{R}(T)
\end{aligned}
$$

Let R be a ring, I an ideal of R and S a multiplicative subset of R. Then $\pi: R \rightarrow R / I$ is a ring epimorphism and $\pi(S):=\bar{S}=\{s+I \in R / I: s \in S\}$ is naturally a multiplicative subset of R / I.
Proposition 4.3. Let R be a ring and S a multiplicative subset of R. Let $a \in R$ be an element such that $u-S-f d_{R}(R / a R)=1$. Written $\bar{R}=R / a R$ and $\bar{S}=\{s+a R \in \bar{R}: s \in S\}$. Then the following assertions hold.
(1) Let M be a nonzero \bar{R}-module. If $u-\bar{S}-f d_{\bar{R}}(M)<\infty$, then

$$
u-S-f d_{R}(M)=u-\bar{S}-f d_{\bar{R}}(M)+1
$$

(2) If u - \bar{S}-w.gl. $\operatorname{dim}(\bar{R})<\infty$, then

$$
u-S-w \cdot g l . \operatorname{dim}(R) \geq u-\bar{S}-w . g l . \operatorname{dim}(\bar{R})+1 .
$$

Proof. (1) Set $u-\bar{S}-f d_{\bar{R}}(M)=n$. By Proposition 4.2, we have $u-S-f d_{R}(M) \leq$ $u-\bar{S}-f d_{\bar{R}}(M)+1=n+1$. Since $u-\bar{S}-f d_{\bar{R}}(M)=n$, then there is an injective \bar{R}-module C such that $\operatorname{Tor}_{n}^{\bar{R}}(M, C)$ is not $u-\bar{S}$-torsion. By [5, Theorem 2.4.22], there is an injective R-module E such that $0 \rightarrow C \rightarrow E \rightarrow E \rightarrow 0$ is exact. By [5, Proposition 3.8.12(4)], $\operatorname{Tor}_{n+1}^{R}(M, E) \cong \operatorname{Tor}_{n}^{\bar{R}}(M, C)$. Thus $\operatorname{Tor}_{n+1}^{R}(M, E)$ is not u-S-torsion. So u-S- $f d_{R}(M)=u$ - $\bar{S}-f d_{\bar{R}}(M)+1$.
(2) Let $n=u$ - \bar{S}-w.gl. $\operatorname{dim}(\bar{R})$. Then there is a nonzero \bar{R}-module M such that u - $\bar{S}-f d_{\bar{R}}(M)=n$. Thus u - $S-f d_{R}(M)=n+1$ by (1). So u - S-w.gl.dim (R) $\geq u$ - \bar{S}-w.gl. $\operatorname{dim}(\bar{R})+1$.

Let R be a ring and M an R-module. Denote by $R[x]$ the polynomial ring with one indeterminate, where all coefficients are in R. Set $M[x]=M \otimes_{R}$ $R[x]$. Then $M[x]$ can be seen as an $R[x]$-module naturally. It is well-known
w.gl.dim $(R[x])=$ w.gl.dim (R) (see [5, Theorem 3.8.23]). In this section, we give a u-S-analogue of this result. Let S be a multiplicative subset of R. Then S is a multiplicative subset of $R[x]$ naturally.

Lemma 4.4. Let R be a ring and S a multiplicative subset of R. Let T be an R-module and F an $R[x]$-module. Then the following assertions hold.
(1) T is u-S-torsion over R if and only if $T[x]$ is a u-S-torsion $R[x]-$ module.
(2) If F is u-S-flat over $R[x]$, then F is u - S-flat over R.

Proof. (1) If $s T[x]=0$ for some $s \in S$, then trivially $s T=0$. So T is u-Storsion over R. Suppose $s T=0$ for some $s \in S$. Then $s T[x] \cong(s T)[x]=0$. Thus $T[x]$ is a u - S-torsion $R[x]$-module.
(2) Suppose F is a u - S-flat $R[x]$-module. By [3, Theorem 1.3.11],

$$
\operatorname{Tor}_{1}^{R}(F, L)[x] \cong \operatorname{Tor}_{1}^{R[x]}(F[x], L[x])
$$

is u-S-torsion. Thus there exists an element $s \in S$ such that $s \operatorname{Tor}_{1}^{R}(F, L)[x]=0$. So $s \operatorname{Tor}_{1}^{R}(F, L)=0$. It follows that F is a u-S-flat R-module.

Proposition 4.5. Let R be a ring, S a multiplicative subset of R and M an R-module. Then $u-S-f d_{R[x]}(M[x])=u-S-f d_{R}(M)$.

Proof. Assume that u - S - $f d_{R}(M) \leq n$. Then $\operatorname{Tor}_{n+1}^{R}(M, N)$ is u - S-torsion for any R-module N by Proposition 2.3. Thus for any $R[x]$-module L,

$$
\operatorname{Tor}_{n+1}^{R[x]}(M[x], L) \cong \operatorname{Tor}_{n+1}^{R}(M, L)
$$

is u-S-torsion for any $R[x]$-module L by [3, Theorem 1.3.11]. Consequently, $u-S-f d_{R[x]}(M[x]) \leq n$ by Proposition 2.3.

Let $0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M[x] \rightarrow 0$ be an exact sequence with each $F_{i} u$-S-flat over $R[x](1 \leq i \leq n)$. Then it is also a u - S-flat resolution of $M[x]$ over R by Lemma 4.4. Thus $\operatorname{Tor}_{n+1}^{R}(M[x], N)$ is u-S-torsion for any R-module N by Proposition 2.3. It follows that $s \operatorname{Tor}_{n+1}^{R}(M[x], N)=$ $s \bigoplus_{i=1}^{\infty} \operatorname{Tor}_{n+1}^{R}(M, N)=0$. Thus $\operatorname{Tor}_{n+1}^{R}(M, N)$ is u - S-torsion. Consequently, $u-S-f d_{R}(M) \leq u-S-f d_{R[x]}(M[x])$ by Proposition 2.3 again.

Let M be an $R[x]$-module. Then M can be naturally viewed as an R-module. Define $\psi: M[x] \rightarrow M$ by

$$
\psi\left(\sum_{i=0}^{n} x^{i} \otimes m_{i}\right)=\sum_{i=0}^{n} x^{i} m_{i}, \quad m_{i} \in M
$$

And define $\varphi: M[x] \rightarrow M[x]$ by

$$
\varphi\left(\sum_{i=0}^{n} x^{i} \otimes m_{i}\right)=\sum_{i=0}^{n} x^{i+1} \otimes m_{i}-\sum_{i=0}^{n} x^{i} \otimes x m_{i}, \quad m_{i} \in M
$$

Lemma 4.6 ([5, Theorem 3.8.22]). Let R be a ring. For any $R[x]$-module M,

$$
0 \rightarrow M[x] \xrightarrow{\varphi} M[x] \xrightarrow{\psi} M \rightarrow 0
$$

is exact.
Theorem 4.7. Let R be a ring and S a multiplicative subset of R satisfying $u-S-f d_{R[x]}(R)=1$. Then u-S-w.gl. $\operatorname{dim}(R[x])=u-S-w . g l . \operatorname{dim}(R)+1$.
Proof. Let M be an $R[x]$-module. Then, by Lemma 4.6, there is an exact sequence over $R[x]$:

$$
0 \rightarrow M[x] \rightarrow M[x] \rightarrow M \rightarrow 0
$$

By Proposition 2.7 and Proposition 4.5,
(*) $\quad u-S-f d_{R}(M) \leq u-S-f d_{R[x]}(M) \leq 1+u-S-f d_{R[x]}(M[x])=1+u-S-f d_{R}(M)$.
Thus if u-S-w.gl.dim $(R)<\infty$, then u - S-w.gl. $\operatorname{dim}(R[x])<\infty$.
Conversely, if u - S-w.gl. $\operatorname{dim}(R[x])<\infty$, then for any R-module M, u - S $f d_{R}(M)=u-S-f d_{R[x]}(M[x])<\infty$ by Proposition 4.5. Therefore we have $u-S$ w.gl. $\operatorname{dim}(R)<\infty$ if and only if u-S-w.gl. $\operatorname{dim}(R[x])<\infty$. Now we assume that both of these are finite. Then u-S-w.gl.dim $(R[x]) \leq u$ - S-w.gl.dim $(R)+1$ by $(*)$. Since $R \cong R[x] / x R[x]$ and $u-S-f d_{R[x]}(R[x] / x R[x])=u-S-f d_{R[x]}(R)=1$, u-S-w.gl. $\operatorname{dim}(R[x]) \geq u$ - S-w.gl.dim $(R)+1$ by Proposition 4.3. Consequently, we have u - S-w.gl.dim $(R[x])=u$ - S-w.gl.dim $(R)+1$.

Remark 4.8. Remark that $u-S-f d_{R[x]}(R)=1$ in the following cases.
(1) $S=\mathrm{U}(\mathrm{R})$ is consist of units.
(2) $R=R_{1} \times R_{2}$ and $S=\mathrm{U}\left(\mathrm{R}_{1}\right) \times 0$.

We also remark that u - S-w.gl.dim $(R[x])$ may not be equal to u - S-w.gl.dim $(R)+$ 1 in general. For example, let S be a multiplicative subset of R that contains 0 . Then u - S-w.gl.dim $(R)=u$-S-w.gl. $\cdot \operatorname{dim}(R[x])=0$.

References

[1] D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407-4416. https://doi.org/10.1081/AGB-120013328
[2] L. Fuchs and L. Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, 84, American Mathematical Society, Providence, RI, 2001. https://doi. org/10.1090/surv/084
[3] S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, SpringerVerlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
[4] I. Kaplansky, Commutative Rings, Allyn and Bacon, Inc., Boston, MA, 1970.
[5] F. Wang and H. Kim, Foundations of commutative rings and their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
[6] S. H. Zhang, T-projective modules and G-semisimple rings, Acta Math. Sinica 35 (1992), no. 3, 378-386.
[7] X. L. Zhang, Characterizing S-flat modules and S-von Neumann regular rings by uniformity, to appear in Bull. Korean Math. Soc. https://arxiv.org/abs/2105.07941.

Xiaolei Zhang
School of Mathematics and Statistics
Shandong University of Technology
Zibo 255049, P. R. China
Email address: zxlrghj@163.com

