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SOME FUNCTIONAL IDENTITIES ARISING

FROM DERIVATIONS

Abdellah Mamouni, Lahcen Oukhtite, and Mohammed Zerra

Abstract. This paper considers some functional identities related to

derivations of a ring R and their action on the centre of R/P where P
is a prime ideal of R. It generalizes some previous results that are in the

same spirit. Finally, examples proving that our restrictions cannot be
relaxed are given.

1. Introduction

In all that follows, unless stated otherwise, R will be an associative ring with
center Z(R). Recall that a proper ideal P of R is said to be prime if whenever
xRy ⊆ P implies that x ∈ P or y ∈ P. The ring R is a prime ring if and
only if (0) is a prime ideal of R. A ring R is said to be n-torsion free, where
n 6= 0 is a positive integer, if whenever na = 0, with a ∈ R, then a = 0. For
any x, y ∈ R, the symbol [x, y] and x ◦ y denote the Lie product xy − yx and
Jordan product xy + yx, respectively. An additive mapping d : R −→ R is
called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. Let a ∈ R
be a fixed element. A map d : R −→ R defined by d(x) = [a, x] = ax − xa,
x ∈ R, is a derivation on R, which is called an inner derivation defined by
a. Recently, many results in literature indicate how the global structure of a
ring R is often tightly connected to the behaviour of additive mappings defined
on R (for example, see [2], [3], [5], [6] and [13]). Herstein [14] showed that a
2-torsion free prime ring R must be a commutative integral domain if it admits
a nonzero derivation d satisfying [d(x), d(y)] = 0 for all x, y ∈ R, and if the
characteristic of R equals two, the ring R must be commutative or an order in
a simple algebra which is 4-dimensional over its center. Several authors have
proved commutativity theorems for prime rings admitting derivations which
are centralizing on R. We begin recalling that a mapping f : R −→ R is
called centralizing on R if [f(x), x] ∈ Z(R) for all x ∈ R. A well known result
of Posner [16] states that if d is a derivation of the prime ring R such that
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[d(x), x] ∈ Z(R) for any x ∈ R, then either d = 0 or R is commutative. In [10]
Lanski generalizes the result of Posner to a Lie ideal.

More recently several authors considered similar situation in the case the
derivation d is replaced by a generalized derivation. More specifically an ad-
ditive map F : R −→ R is said to be a generalized derivation if there exists a
derivation d of R such that, for all x, y ∈ R, F (xy) = F (x)y + xd(y). Basic
examples of generalized derivations are the usual derivations on R and a left
R-module mappings from R into itself. An important example is a map of
the form F (x) = ax + xb for some a, b ∈ R; such generalized derivations are
called inner. Generalized derivations have been primarily studied on operator
algebras. Therefore any investigation from the algebraic point of view might
be interesting (see for example [11] and [15]).

The present paper is motivated by the previous results and we here con-
tinue this line of investigation by studying some functional identities related
to derivations of a ring R and their action on the centre of R/P where P is a
prime ideal of R.

2. Some results inspired by Herstein theorems

In what follows, x̄ for x in R denotes x+P in R/P. We begin our discussion
with the following lemma which is essential for developing the proof of our main
results.

Lemma 2.1. Let R be a ring and P a prime ideal of R. If d is a derivation
of R and a ∈ R such that [a, d(x)] ∈ P for all x ∈ R, then:

(1) If char(R/P ) 6= 2, then d(R) ⊆ P or a ∈ Z(R/P ).
(2) If char(R/P ) = 2, then a2 ∈ Z(R/P ). Moreover, if a /∈ Z(R/P ), then

d satisfies d(x) = λ[a, x] for all x ∈ R, where λ in the extended centroid
of R/P .

Proof. We are given that

(2.1) [a, d(x)] ∈ P for all x ∈ R.

Substituting xy instead of x in (2.1), we get

(2.2) [a, d(x)]y + +d(x)[a, y] + x[a, d(y)] + [a, x]d(y) ∈ P for all x, y ∈ R

which, in view of (2.1), the last expression yields

(2.3) d(x)[a, y] + [a, x]d(y) ∈ P for all x, y ∈ R.

As a special case of (2.3), when we put y = d(r) we may write

(2.4) d(x)[a, d(r)] + [a, x]d2(r) ∈ P for all r, x ∈ R

and employing the fact that [a, d(r)] ∈ P for all r ∈ R, then (2.4) may be
restated as

(2.5) [a, x]d2(r) ∈ P for all r, x ∈ R.
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If we write xy instead of x in (2.5) and using it, we obtain

(2.6) [a, x]Rd2(r) ⊆ P for all r, x ∈ R.
Invoking the primeness of P , it follows from the above expression that either
[a, x] ∈ P for all x ∈ R or d2(r) ∈ P for all r ∈ R. In the first case we obtain
a ∈ Z(R/P ). For the later case replacing r by rs, we arrive at

(2.7) d(d(rs)) = d2(r)s+ 2d(r)d(s) + rd2(s) ∈ P for all r, s ∈ R.
In such a way that

(2.8) 2d(r)d(s) ∈ P for all r, s ∈ R.
Once again putting rt instead of r in the last relation, we obviously find that

(2.9) 2d(r)Rd(s) ⊆ P for all r, s ∈ R.
However, if the characteristic of R/P is not 2, we obtain

(2.10) d(r)Rd(s) ⊆ P for all r, s ∈ R.
Using the primeness of P together with equation (2.10), we conclude that
d(R) ⊆ P .

Now assuming that the characteristic of the ring R/P is two, and putting
ry instead of y in relation (2.3) and applying it, we may write

(2.11) d(x)r[a, y] + [a, x]rd(y) ⊆ P for all r, x, y ∈ R.
This may be restated as

(2.12) d(x)r[a, y] = [a, x]rd(y) for all r, x, y ∈ R.
As a particular case of (2.12), when we put y = x, it is obvious to see that

(2.13) d(x)r[a, x] = [a, x]rd(x) for all r, x ∈ R.

If [x, a] = 0, then a ∈ Z(R/P ).

Now assuming that a /∈ Z(R/P ), then [7, Lemma 1.3.2] proving that d(x) =

λ[a, x] where λ in the extended centroid of R/P .

Now the hypothesis [a, d(x)] ∈ P for all x ∈ R, leads to λ[a, [a, x]] = 0.

So because of λ 6= 0 we arrive at a(ax+ xa) = (ax+ xa)a. Accordingly a2 ∈
Z(R/P ). This completes the proof of our result. �

A classical theorem of Herstein [9] states that: if R is a prime ring provided
with a nonzero derivation d and a ∈ R such that ad(x) − d(x)a = 0 for all
x ∈ R, then; if the characteristic of R is not equal to two, then a ∈ Z(R), and
if the characteristic of R is two, then a2 ∈ Z(R).

Our goal in the following theorem is to investigate a more general context
of differential identity involving a prime ideal P by omitting the primeness
assumption imposed on the considered ring R. This approach allows us to
generalize the preceding result, indeed we will study the behaviour of the more
general expression ad(x)− d(x)a ∈ Z(R/P ) for all x ∈ R, where R is any ring
and P is a prime ideal of R rather than ad(x)−d(x)a = 0. Moreover, our result
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is more consistent because we will not get a ∈ Z(R/P ) but we will also prove
that the derivation d has its range in the prime ideal P . More precisely we will
prove the following result.

Theorem 2.2. Let R be a ring and P be a prime ideal of R. If d is a derivation
of R and a ∈ R such that [a, d(x)] ∈ Z(R/P ) for all x ∈ R, then:

(1) If char(R/P ) 6= 2, then d(R) ⊆ P or a ∈ Z(R/P ).
(2) If char(R/P ) = 2, then a2 ∈ Z(R/P ).

Proof. Suppose that

(2.14) [a, d(x)] ∈ Z(R/P ) for all x ∈ R.

Analogously, substituting [a, x] instead of x in the above relation, it follows
that

(2.15) [a, [d(a), x]] + [a, [a, d(x)]] ∈ Z(R/P ) for all x ∈ R.

This means that

(2.16) [a, [d(a), x]] ∈ Z(R/P ) for all x ∈ R.

Once again putting ax instead of x in (2.16), we thereby obtain

(2.17) [a, a[d(a), x] + [d(a), a]x] ∈ Z(R/P ) for all x ∈ R.

Keeping in mind that [d(a), a] is central in R/P and using the last expression
we have

(2.18) a[a, [d(a), x]] + [d(a), a][a, x] ∈ Z(R/P ) for all x ∈ R.

Commuting the relation (2.18) with a and invoking (2.16), we arrive at

(2.19) [d(a), a][[a, x], a] + [[d(a), a], a][a, x] ∈ P for all x ∈ R.

This can be rewritten as

(2.20) [d(a), a]R[[a, x], a] ⊆ P for all x ∈ R.

In light of primeness of P , we get either [d(a), a] ∈ P or [[a, x], a] ∈ P . In
the later case, we can again employ the argument of Lemma 2.1, we obtain
the required result. Now suppose that [d(a), a] ∈ P , then the relation (2.18)
becomes

(2.21) a[a, [d(a), x]] ∈ Z(R/P ) for all x ∈ R.

The fact that [a, [d(a), x]] ∈ Z(R/P ) by expression (2.16), forces that either
a ∈ Z(R/P ) or [a, [d(a), x]] ∈ P for all x ∈ R, if Dd(a)(x) = [d(a), x] denotes the
inner derivation induced by d(a), then the preceding relation may be restated
as

(2.22) [a,Dd(a)(x)] ∈ P for all x ∈ R.
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If the characteristic of R/P is not equal to two, then invoking Lemma 2.1,
we get either a ∈ Z(R/P ) or Dd(a)(R) ⊆ P . In the second case we obtain

d(a) ∈ Z(R/P ). Replacing x by xa in our hypothesis, we may write

(2.23) [a, d(x)]a+ x[a, d(a)] + [a, x]d(a) ∈ Z(R/P ) for all x ∈ R.

Using the fact that [d(a), a] ∈ P , we arrive at

(2.24) [a, d(x)]a+ [a, x]d(a) ∈ Z(R/P ) for all x ∈ R.

Commuting the last relation with a and using the hypothesis, we obtain

(2.25) [[a, x], a]d(a) ∈ P for all x ∈ R.

So that

(2.26) [[a, x], a]Rd(a) ⊆ P for all x ∈ R.

The primeness of P implies easily that either [[a, x], a] ∈ P for all x ∈ R or
d(a) ∈ P . In the first case applying Lemma 2.1 we get a ∈ Z(R/P ). Now if
d(a) ∈ P , then (2.23) becomes

(2.27) [a, d(x)]a ∈ Z(R/P ) for all x ∈ R.

Then either a ∈ Z(R/P ) or [a, d(x)] ∈ P for all x ∈ R. In light of Lemma 2.1
it follows that a ∈ Z(R/P ) or d(R) ⊆ P .

Therefore we assume henceforth that the characteristic of the ring R/P
is equal to two, then invoking Lemma 2.1 from relation (2.22), we find that

a2 ∈ Z(R/P ). Moreover if a /∈ Z(R/P ), then Dd(a)(x) = λ[a, x] where λ
is in the extended centroid of R/P . However the relation (2.22), becomes

λ[a, [a, x]] = 0, and thus a(ax+ xa) = (ax+ xa)a. Accordingly a2 ∈ Z(R/P ).
This completes the proof of our theorem. �

If we consider R is a prime ring in Theorem 2.2, then P = (0) is a prime
ideal of R, in this case we get a generalization of Herstein’s result [9].

Corollary 2.3. Let R be a prime ring. If d is a nonzero derivation of R and
a ∈ R such that [a, d(x)] ∈ Z(R) for all x ∈ R, then:

(1) If char(R) 6= 2, then a ∈ Z(R).
(2) If char(R) = 2, then a2 ∈ Z(R).

In 1969 Herstein [8, Theorem 2] proved that if a prime ring R of characteristic
different from two admits a nonzero derivation d such that [d(x), d(y)] = 0
holds for all x, y ∈ R, then R is commutative. Motivated by the above result
we investigate a more general context of differential identity involving a prime
ideal by omitting the primeness assumption imposed on the ring. Especially,
we will investigate in the following proposition the behavior of the more general
expression [d1(x), d2(y)] ∈ Z(R/P ) for all x, y ∈ R where R is any ring and P
is a prime ideal of R.
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Proposition 2.4. Let R be a ring and P is a prime ideal of R such that
char(R/P ) 6= 2. If d1, d2 are derivations of R satisfying [d1(x), d2(y)] ∈
Z(R/P ) for all x, y ∈ R, then one of the following assertions holds:

(1) d1(R) ⊆ P .
(2) d2(R) ⊆ P .
(3) R/P is a commutative integral domain.

Proof. Of course we have [d1(x), d2(y)] ∈ Z(R/P ) for all x, y ∈ R, and the
characteristic of the ring R/P is not 2, then according to Theorem 2.2, we

have d1(x) ∈ Z(R/P ) for all x ∈ R or d2(R) ⊆ P . The relation of the first
case reduces to [d1(x), x] ∈ P and applying [1, Lemma 1], we conclude that
d1(R) ⊆ P or R/P is a commutative integral domain and we are done. �

Now, we get a similar result of P. H. Lee et al. [12, Theorem 2], which is a
generalization of Herstein’s result [9, Theorem 2].

Corollary 2.5 ([12, Theorem 2]). Let R be a 2-torsion free prime ring. If d1,
d2 are nonzero derivations of R, then the following assertions are equivalent:

(1) [d1(x), d2(y)] ∈ Z(R) for all x, y ∈ R;
(2) R is a commutative integral domain.

In [12, Theorem 4], it is showed that if R is a 2-torsion free prime ring and
d1, d2 are two nonzero derivations of R such that d1d2(R) ⊆ Z(R), then R
must be commutative. Motivated by this result the author in [4, Theorem 2],
established that: if R is any ring and P is a prime ideal of R such that the
characteristic of R/P is not 2 and d1, d2 are two derivations of R such that
d1d2(R) ⊆ P for all x, y ∈ R, then d1(R) ⊆ P or d2(R) ⊆ P .

A trivial question that now appears: Is that conclusion remains satisfied if
we consider the identity d1d2(x) ∈ Z(R/P ) for all x ∈ R where R is any ring
and P is a prime ideal of R? The following proposition gives an affirmative
answer to this question.

Proposition 2.6. Let R be a ring and P is a prime ideal of R such that
char(R/P ) 6= 2. If d1, d2 are derivations of R satisfying d1d2(x) ∈ Z(R/P ) for
all x ∈ R, then one of the following assertions holds:

(1) d1(R) ⊆ P .
(2) d2(R) ⊆ P .
(3) R/P is a commutative integral domain.

Proof. We are given that

(2.28) d1d2(x) ∈ Z(R/P ) for all x ∈ R.

Replacing x by [x, y] in this relation and applying the hypothesis, we obviously
obtain

(2.29) [d1(x), d2(y)] + [d2(x), d1(y)] ∈ Z(R/P ) for all x, y ∈ R.
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Once again putting x = d2(r) in (2.29), it follows that

(2.30) [d22(r), d1(y)] ∈ Z(R/P ) for all r, y ∈ R.

Then according to Theorem 2.2, we have either d22(r) ∈ Z(R/P ) for all r ∈ R
or d1(R) ⊆ P . Suppose that

(2.31) d22(x) ∈ Z(R/P ) for all x ∈ R.

Writing [x, y] instead of x in this expression, we find that

(2.32) [d22(x), y] + 2[d2(x), d2(y)] + [x, d22(y)] ∈ Z(R/P ) for all x, y ∈ R.

Using the fact that d22(x) ∈ Z(R/P ) for all x ∈ R, we arrive at

(2.33) 2[d2(x), d2(y)] ∈ Z(R/P ) for all x, y ∈ R.

Because of the characteristic of R/P is not 2, leads to [d2(x), d2(y)] ∈ Z(R/P )
for all x, y ∈ R. Hence Proposition 2.4 forces that d2(R) ⊆ P or R/P is a
commutative integral domain. �

Now, the following corollary deduces the result of P. H. Lee et al. [12, The-
orem 4].

Corollary 2.7 ([12, Theorem 4]). Let R be a 2-torsion free prime ring. If d1,
d2 are nonzero derivations of R, then the following assertions are equivalent:

(1) d1d2(x) ∈ Z(R) for all x ∈ R;
(2) R is a commutative integral domain.

The following example demonstrates that the primeness condition imposed
on the ideal P in Theorem 2.2 can not be omitted.

Example 2.8. Let us consider the ring R =

{
( x y
0 z )

∣∣∣∣ x, y, z ∈ Z
}

and d ( x y
0 z )

=
(
0 y
0 0

)
. It straightforward to check that d is a derivation of R and P = (0) is

a non-prime ideal of R. Moreover, for a = ( 1 1
0 1 ) we have

[a, d(X)] ∈ Z(R) for all X ∈ R.

However a /∈ Z(R).

To close this circle of ideas, it’s natural to ask whether Herstein’s theorem
in [9] is true for semi-prime rings. Since all our proof attempts have failed, we
are forced to consider the following conjecture:

Conjecture. Hestein’s theorem in [9] cannot be extended to semi-prime rings.

The next example gives an affirmative answer to the above conjecture.

Example 2.9. Let us consider the 2-torsion free semi-prime ringR = Q[X]×R
where R is a non-commutative prime ring and define d(P,M) = (P ′, 0) for all
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(P,M) ∈ R where P ′ denotes the usually derivation. If we set a = (X,α) ∈ R,
then d is a nonzero derivation of R such that

[a, d(P,M)] = (X,α) (P ′, 0)− (P ′, 0) (X,α)

= (0, 0) ∈ Z(R).

However a /∈ Z(R).
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