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PRÜFER CONDITIONS VS EM CONDITIONS

Emad Abuosba, Mariam Al-Azaizeh, and Manal Ghanem

Abstract. In this article we relate the six Prüfer conditions with the EM

conditions. We use the EM-conditions to prove some cases of equivalence

of the six Prüfer conditions. We also use the Prüfer conditions to answer
some open problems concerning EM-rings.

1. Introduction

All rings are assumed to be commutative with unity. Let R be a ring such
that for each a, b ∈ R, there exist c, d, f ∈ R with a = cd, b = df and R = (d, f).
Kaplansky in [16] named this ring a Hermite ring. Many other different rings
were called in the literature Hermite rings, and so it was suggested to call
Kaplansky’s ring a K-Hermite ring. A generalization to K-Hermite rings was
given in [2] to be EM-Hermite rings in which if a, b ∈ R, there exist c, d, f ∈ R
with a = cd, b = df and (c, f) is a regular ideal. It was shown there that R
is K-Hermite if and only if R is a Bézout and EM-Hermite ring. Yet another
generalization was given in [1], R is called an EM-ring if for each f(x) ∈ R[x],
there exist a ∈ R and a regular polynomial g(x) ∈ R[x] such that f(x) = ag(x).
The ring R is called a locally EM-ring if for each prime ideal P of R, we have
RP is an EM-ring.

It was shown in [3] that a ring R is an EM-ring if and only if for any finitely
generated ideal I of R there exist a ∈ R and a finitely generated ideal J of R
such that I = aJ and Ann(J) = {0}.

It is clear that an EM-Hermite ring is an EM-ring with property A. An
example of an EM-ring that is not an EM-Hermite ring can be found in [2].

In this article we try to relate the EM conditions with the six well known
Prüfer conditions:

(P1) R is a Prüfer ring (every finitely generated regular ideal in R is invert-
ible).
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(P2) R is a locally Prüfer ring (RP is Prüfer for every prime ideal P of R).
(P3) R is a Gaussian ring (for every f, g ∈ R[x], c(fg) = c(f)c(g)).
(P4) R is an arithmetical ring (every finitely generated ideal of R is locally

principal).
(P5) w.dim(R) ≤ 1 (every finitely generated ideal of R is flat).
(P6) R is semihereditary (every finitely generated ideal of R is projective).

It is known that if R is an integral domain, then (P1) to (P6) are all equiv-
alent, but if R is not an integral domain, then (P6) ⇒ (P5) ⇒ P(4) ⇒ P(3) ⇒
P(2) ⇒ P(1), while the reverse implications are all false. A lot of work in the
literature are done to investigate the cases at which some of these conditions
are equivalent. For a survey for the six Prüfer conditions, see [11].

In Section 2, we studied the relations between the EM conditions and the
Prüfer conditions. While K-Hermite rings and semihereditary rings are incom-
parable, there are some other implications. At the end of the section there is
a diagram illustrating these interactions.

In Section 3, we used the EM-conditions to prove some cases of equivalence
of the six Prüfer conditions. Theorem 3.9 shows that if R is a reduced EM-
ring such that Min(R) is compact, then the Prüfer conditions (P1) to (P6) are
equivalent. Weaker conditions are given in Theorem 3.1 to show that (P1) to
P(4) are equivalent and Theorem 3.2 to show (P1) to (P5) are equivalent. It
was proved in [1] that if R is a PP-ring (every principal ideal is projective), then
R is an EM-ring, but the relation with PF-rings (every principal ideal is flat)
was not investigated, now and while looking for relations between EM-rings
and Prüfer rings, we found an example of a PF-ring that is not an EM-ring.
We also manage to find an example of a locally EM-ring that is not an EM-ring,
while investigating relations between EM-rings and arithmetical rings.

In Section 4, we used the Prüfer conditions and Theorems 3.1, 3.2 and 3.9, to
answer some open problems concerning EM-rings. It is proved in [1] that if R
is an EM-ring, then T (R) (the total quotient ring of R) and R[x] are EM-rings.
Here we give partial answers to the converses.

For any ring R, let Z(R) = {a ∈ R : ab = 0 for some b ∈ R − {0}},
Nil(R) = {a ∈ R : an = 0 for some n ∈ N} for any subset S of R, let
Ann(S) = {a ∈ R : as = 0 for all s ∈ S}, Min(R) = {P : P is a minimal prime
ideal of R}. Recall that a ring R is said to be reduced if Nil(R) = {0}. R is
said to have property A if every finitely generated ideal I ⊆ Z(R) has a nonzero
annihilator. A ring R is an a.c. ring if for every pair of elements a, b ∈ R, there
is an element c ∈ R such that Ann(a, b) = Ann(c). It is shown in [17] that if R
is a reduced ring, then R has property A and Min(R) is compact if and only
if R is an a.c. ring and Min(R) is compact.

2. Prüfer conditions vs EM conditions

A semihereditary non-Bézout ring is not K-Hermite, and we found an ex-
ample of a K-Hermite ring that is not semihereditary, see Example 3.3 below,
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and so semihereditary and K-Hermite are incomparable. Similarly K-Hermite
rings and rings R with w.dim(R) ≤ 1 are incomparable; as Z4 is K-Hermite
with w.dim(Z4) > 1, and for an example of a ring R with w.dim(R) ≤ 1 that
is not K-Hermite, see Example 3.4 below, while any K-Hermite ring is Bézout,
and so it is arithmetical.

If R is semihereditary, then it is EM-Hermite, and so it is an EM-ring, while
Z[x] is an example of an EM-Hermite ring that is not Prüfer.

The ring in Example 3.5 below has weak global dimension ≤ 1 but it is not
an EM-ring. Thus the EM-rings and EM-Hermite rings are incomparable with
Prüfer conditions (P1) to (P5). It is clear that any arithmetical ring is a locally
EM-ring, while Z[x] is a locally EM-ring that is not arithmetical. Example 3.7
below is an example of a Gaussian ring that is not a locally EM-ring, and so a
locally EM-ring is incomparable with Prüfer conditions (P1) to P(3). But yet
rings with Prüfer conditions and EM-rings affect each others. The following
diagram illustrates the relations between these rings.

Prüfer
↑

Locally Prüfer
↑

Gaussian
↑

Semihereditary −→ w.dim(R) ≤ 1 −→ Arithmetical
↓ ↗ ↓

EM-Hermite ←− K-Hermite Locally EM-ring
↓ ↗

EM-ring with property A −→ EM-ring

3. When are the Prüfer conditions equivalent?

In this section we will use the EM conditions to prove some cases of equiv-
alence of the six Prüfer conditions.

Theorem 3.1. Let R be an EM-ring with property A. Then the Prüfer condi-
tions (P1) to (P4) are equivalent.

Proof. For the implications P(4) ⇒ P(3) ⇒ P(2) ⇒ P(1), see [11].
P(1) ⇒ P(4): Let I be a finitely generated ideal in R. Then I = aJ where

a ∈ R and J is a finitely generated ideal of R with Ann(J) = {0}, and since R
has property A, J is a regular ideal. Since R is a Prüfer ring, J is invertible,
and so it follows by Theorem 3.9 in [11] that J is locally principal, and hence
I = aJ is locally principal. Thus R is arithmetical. �

The ring Z4 is a Prüfer EM-Hermite ring, and so all the four conditions
in Theorem 3.1 are satisfied, but it is not reduced, and so w.dim(Z4) > 1.
We now see that if we add the reduced condition, then the four conditions in
Theorem 3.1 are equivalent to P(5).
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Theorem 3.2. Let R be a reduced EM-ring with property A. Then the Prüfer
conditions (P1) to (P5) are equivalent.

Proof. For the implications P(5) ⇒ P(4) ⇒ P(3) ⇒ P(2) ⇒ P(1), see [11].
P(1) ⇒ P(5): It follows by Theorem 3.1 that R is Gaussian. But if R is a

Gaussian reduced ring, then w.dim(R) ≤ 1, see [11, Theorem 5.6]. �

The question now is: if the conditions in Theorem 3.2 are sufficient to im-
ply that R is semihereditary. Unfortunately the answer is no, as seen in the
following examples.

Example 3.3. Let X = βR+ −R+, where βR+ is the Stone-Čech compactifi-
cation of R+. It was proved in [8, Example 3.3] that X is a compact connected
F -space, and its ring of real valued continuous functions C(X) is Bézout, K-
Hermite ring, and so it is a reduced EM-Hermite ring with w.dim(C(X)) ≤ 1,
but it is not semihereditary, since X is connected.

Example 3.4. Let X = [0,∞) × [−1, 1]. It was proved in [8, Example 3.4]
that R = C(βX −X) is a Bézout ring that is not K-Hermite and as noted in
[2] that this implies that R is not EM-Hermite. Then R is an EM-ring with
w.dim(R) ≤ 1, but R is not semihereditary.

Example 3.5. Let T =
∏

i∈N Q[x], f = (x, 0, x2, 0, x3, 0, . . .), I = fT , D the
set of all sequences in T that are eventually constant and let R = I+D. It was
noted in [11, Example 4.1] that w.dim(R) ≤ 1, but R is not semihereditary.
We now show that R is not an EM-ring. Let

a = (xf1, 0, x
2f2, 0, x

3f3, 0, . . .) with fi = x+ i,

b = (xg1, 0, x
2g2, 0, x

3g3, 0, . . .) with gi = x2 + i.

Assume k(y) = a+ by = α
∑k

i=0 βiy
i with

⋂
Ann(βi) = {0}.

Note that the tail of any element in R is of the form (xnfn(x) + c(x), c(x),
xn+1fn+1(x) + c(x), c(x), . . .). We can find n ∈ N such that

a = (. . . , xnfn(x), 0, xn+1fn+1(x), . . .),

b = (. . . , xngn(x), 0, xn+1gn+1(x), 0, . . .),

α = (α1, x
nhn(x) + d(x), d(x), xn+1hn+1(x) + d(x), d(x), . . .),

βi = (βi,1, x
nri,n(x) + ci(x), ci(x), xn+1ri,n+1(x) + ci(x), ci(x), . . .),

where α1, βi,1 ∈
∏n−1

i=1 Q[x] for i = 0, 1, . . . , k. Since dci = 0 for all i and∑k
i=0 c

2
i 6= 0, we must have d = 0. Thus we have

xnhn(x) | gcd(xnfn(x), xngn(x)),

and so we get hn ∈ Q. Hence we have for each n > 2

x+ n = hnc0(x),

x2 + n = hnc1(x),
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a contradiction. Hence R is not an EM-ring.

Remark 3.6. The above examples show that the Prüfer conditions (P1) to (P5)
are incomparable with EM, and EM-Hermite rings. Moreover the last example
shows that if R is a PF-ring or a locally EM-ring (since clearly an arithmetical
ring is a locally EM-ring), then R needs not be an EM-ring.

Example 3.7. Let K be a field and let R = K[x, y]
/

(x, y)2 , where x and y
are indeterminants over K. Then R is a Gaussian local ring, see [6, Example
3.9], but as was noted in [3] that R is not an EM-ring, and so it is not locally
EM.

The question now is: what an extra condition must be added to a reduced
EM-ring to ensure that all the six Prüfer conditions are equivalent? Before we
give a partial answer to this question, we give the following example.

Example 3.8. Let X = βN− N. As noted in [12, Example 5.9] that C(X) is
a Bézout ring, but Min(C(X)) is not compact and C(X) is not semihereditary,
and so it is an EM-ring with w.dim(C(X)) ≤ 1.

Theorem 3.9. Let R be a reduced EM-ring such that Min(R) is compact. Then
the Prüfer conditions (P1) to (P6) are equivalent.

Proof. For the implications P(6) ⇒ P(5) ⇒ P(4) ⇒ P(3) ⇒ P(2) ⇒ P(1), see
[11].

P(1) ⇒ P(6): Since R is an EM-ring, it is an a.c. ring, and so T (R) is a von
Neumann regular ring and w.dim(R) ≤ 1. Hence it follows by Theorem 2.3 in
[10] that R is semihereditary. �

Recall that a ring R is coherent if each finitely generated ideal of R is finitely
presented. It is known that a ring R is coherent if and only if the intersection
of any finitely generated ideals of R is finitely generated, and for each a ∈ R,
Ann(a) is finitely generated. So if R is a reduced coherent EM-ring, then
Min(R) is compact, since R is an a.c. ring. Thus we have the following corollary.

Corollary 3.10. Let R be a reduced coherent EM-ring. Then the Prüfer con-
ditions (P1) to (P6) are equivalent.

4. Solving some problems on EM-rings using Prüfer conditions

In this section, we will use results in the previous section to solve some open
problems concerning EM-rings: what extra conditions on R to ensure if T (R)
or R[x] is an EM-ring, then so is R. But first we give an example of an EM-ring
that does not have property A.

Example 4.1. Let K be an algebraic closed field and D = K[x, y]. Let R =
A + B be the ring defined as in Example 2.4 in [17]. The author showed
that this ring is a.c. but it does not have property A. We now show that R is
an EM-ring. For each n ∈ N, let ψn : D →

∏
j∈I−{1,2,...,n}D /Pj such that
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(ψn(z))i = z + Pi. Let (f1, f2, . . . , fn) be a finitely generated ideal in R. We
can find an m ∈ N such that f i = [βi, ψm(zi)], with βi ∈

∑m
j=1D /Pj for

each i. Since
∑m

j=1D /Pj is an EM-Hermite ring, there exist β, γ1, . . . , γn ∈∑m
j=1D /Pj such that βi = βγi for each i and Ann(γ1, . . . , γn) = {0}. Let w =

GCD(z1, . . . , zn), and so we have zi = wki for each i with GCD(k1, . . . , kn) =
1. Then ψm(zi)=ψm(w)ψm(ki) with Ann(ψm(k1), . . . , ψm(kn))=Ann(ψm(1))
= {0}. Thus we have

(f1, f2, . . . , fn) = [β, ψm(w)] ([γ1, ψm(k1)], . . . , [γn, ψm(kn)])

with Ann([γ1, ψm(k1)], . . . , [γn, ψm(kn)]) = {0}. Thus R is a reduced EM-ring,
but clearly Min(R) can not be compact.

4.1. If T (R) is an EM-ring

If R is an EM-ring, then so is T (R), the total ring of quotients of R. It
was shown in [1] that if R = Z6[x, y] /(xy) , then T (R) is an EM-ring, but R is
not. In fact, since R is a Noetherian ring, we have also T (R) is an EM-Hermite
ring, while R is not. The question now is: what extra conditions may be added
to get the converse. In the following we have partial answers using the Prüfer
conditions.

Theorem 4.2. Let R be a reduced Prüfer ring with Min(R) is compact. Then
R is an EM-ring if and only if T (R) is an EM-ring.

Proof. (⇒) See [1].
(⇐) T (R) is an EM-ring, and so R has a.c. condition, and hence T (R) is

von Neumann regular. Now using Theorem 3.12(i) in [6], we get that R is
semihereditary, and hence it is an EM-ring. �

Since a Noetherian ring has only finitely many minimal primes, we see that
the above result is true for reduced Noetherian Prüfer rings.

Example 4.3 (Prüfer, reduced with Min(R) is compact 6⇒ EM-ring). Let K
be a countable, algebraically closed field, let J be an infinite set, and denote by
KJ the set of all maps from J to K. Let N denote the set of natural numbers,
and let L = J ×NN. The author in [9, p. 120] constructed an algebra R ⊆ KL,
which satisfies the following properties:

(1) R is a reduced ring.
(2) R = T (R).
(3) Min(R) is compact.
(4) R is not a von Neumann regular ring.
(5) R is Prüfer which is not Gaussian.

Using Theorem 3.9, R cannot be an EM-ring.

If R is a reduced coherent ring, then R is an a.c. ring if and only if T (R) is
a von Neumann regular ring. Thus we have the following.
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Corollary 4.4. Let R be a reduced coherent Prüfer ring. Then R is an EM-
ring if and only if T (R) is an EM-ring.

Example 4.5 (Coherent, Prüfer ring 6⇒ EM-ring). Let K be a field, and let
T and U be indeterminants over K. Denote by t and u the images of T and U
in K[T,U ]/(T,U)2. Let R = K[t, u](t,u). Then R is a local, Noetherian, non-
reduced Gaussian ring with w.dimR = ∞, see [10, Example 3.4]. Since R is
Noetherian, R is a coherent ring. But R is not an EM-ring, since if we consider
the polynomial f(x) = t+ ux, then Ann(f(x)) = (t, u) is not principal.

Theorem 4.6. Let R be a semilocal Prüfer ring with property A. Then R is
an EM-ring if and only if T (R) is an EM-ring.

Proof. (⇒) See [1].
(⇐) T (R) is a Prüfer EM-ring, and so it is arithmetical. Now using Theorem

3.12(iii) in [6], we get that R is arithmetical. Using Theorem 5 in [15], we get
that R is Bézout, and hence an EM-ring. �

4.2. If R[x] is an EM-ring

It was proved in [1] that if R is an EM-ring, then so is R[x]. The converse
was proved true in [7], if R is reduced. Also the converse was proved true in [3],
if R is Noetherian. Unfortunately, it is unknown yet if the converse is always
true or not.

Let V = {f ∈ R[x] : c(f) = R}, and let U = {f ∈ R[x] : f is monic}. Then
V and U are multiplicative closed sets. Let R(x) = V −1R[x], and R〈x〉 =
U−1R[x]. A ring R is called a strongly Prüfer ring if every finitely generated
ideal I of R with Ann(I) = 0 is locally principal.

Theorem 4.7. Let R be a semilocal strongly Prüfer ring. Then the following
are equivalent:

(1) R is an EM-ring.
(2) R[x] is an EM-ring.
(3) R(x) is an EM-ring.

Proof. (1) ⇒ (2) ⇒ (3): If R is an EM-ring, then R[x] is an EM-ring, and so
R(x) is an EM-ring.

(3) ⇒ (1): Since R is a strongly Prüfer ring, R(x) is a Prüfer ring, see
[4, Theorem 3.2]. Since R(x) is an EM-ring with property A, see [13, Theorem
14.2] and using Theorem 3.1, R(x) is arithmetical, and so R is arithmetical,
see [4, Theorem 3.1]. Thus R is Bézout, being a semilocal arithmetical ring,
see [15, Theorem 5], and so R is an EM-ring. �

Theorem 4.8. Let R be a semilocal, Gaussian ring and assume that RP is
a field for every non-maximal prime ideal P of R. Then the following are
equivalent:

(1) R is an EM-ring.
(2) R[x] is an EM-ring.
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(3) R〈x〉 is an EM-ring.

Proof. We only need (3) ⇒ (1). Since R is a Gaussian ring and RP is a field
for every non-maximal prime ideal P of R, it follows that R〈x〉 is a Gaussian
ring, see [14, Theorem 2.2]. Since R〈x〉 is a Gaussian EM-ring with property
A, and using Theorem 3.1, R〈x〉 is arithmetical, and so R is arithmetical, see
[4, Theorem 3.1]. Thus R is Bézout, being a semilocal arithmetical ring, see
[15, Theorem 5], and so R is an EM-ring. �

It was proved in [13, Theorem 18.12] that R〈x〉 is Prüfer if and only if R
is strongly Prüfer, dim(R) ≤ 1 and RP is a field for every non-maximal prime
ideal P of R. Thus we can obtain the following result.

Theorem 4.9. Let R be a semilocal, strongly Prüfer ring, dim(R) ≤ 1 and
RP is a field for every non-maximal prime ideal P of R. Then the following
are equivalent:

(1) R is an EM-ring.
(2) R[x] is an EM-ring.
(3) R〈x〉 is an EM-ring.

In the previous three theorems, strong conditions were added to get the
equivalence of the statements. Unfortunately, we don’t know yet if they are
equivalence in the general case or with weaker conditions. The following ex-
ample shows that although these conditions are strong, they are not essential
to give EM-ring.

Example 4.10 (Local, Gaussian ring with property A 6=⇒ EM-ring). Let
K $ L be a field extension. Then the idealization R = K(+)L is a Gaussian
ring which is not arithmetical, see [5, Example 2.6]. Since K is a field, then K
is von Neumann regular, and so R = K(+)L has property A, see [17, p. 570].
Clearly R is 0-dimensional with only maximal ideal 0(+)L. If R is an EM -ring,
then by Theorem 3.2, R is arithmetical, which is a contradiction. So, R is not
an EM-ring.
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