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TERRACINI LOCI OF CODIMENSION 1 AND A CRITERION

FOR PARTIALLY SYMMETRIC TENSORS

Edoardo Ballico

Abstract. The Terracini t-locus of an embedded variety X ⊂ Pr is the

set of all cardinality t subsets of the smooth part of X at which a certain
differential drops rank, i.e., the union of the associated double points

is linearly dependent. We give an easy to check criterion to exclude
some sets from the Terracini loci. This criterion applies to tensors and

partially symmetric tensors. We discuss the non-existence of codimension

1 Terracini t-loci when t is the generic X-rank.

1. Introduction

Let X ⊂ Pr be an integral and non-degenerate variety defined over the
complex number field C, but the interested reader may use any algebraically
closed field of characteristic zero. The case of the complex numbers is essential
to get the case over R and our first result (Theorem 1.1) is motivated by the
following problem which arises over R but not over C: deleting a hypersurface
from a connected real manifold M we may disconnect M and this may obstruct
the use of the homotopic tools of Numerical Algebraic Geometry ([5,6]). Over
C deleting a hypersurface we may change the fundamental group and this is
again a problem (although a minor one) for some algorithms in Numerical
Algebraic Geometry. These two problems do not occur if we delete a union of
higher codimension varieties of a connected smooth variety. See [10] for more
on tensors, tensor rank, symmetric tensors, secant varieties and some of their
applications.

Set n := dimX. Let Xreg denote the set of all smooth points of X. For any
positive integer t let S(Xreg, t) denote the set of all subsets of Xreg with cardi-
nality t. The set S(Xreg, t) is a smooth quasi-projective variety of dimension
tn. For any p ∈ Xreg let (2p,X) denote the closed subscheme of X with (Ip,X)2

as its ideal sheaf. The scheme (2p,X) is zero-dimensional, deg(2p,X) = n+ 1
and (2p,X)red = {p}. For any finite set S ⊂ Xreg set (2S,X) := ∪p∈S(2p,X)
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and δ(2S,X) := h1(Pr, I(2S,X)(1)). The Terracini locus or the open Terracini
locus or the Terracini t-set T1(X, t) is the set of all S ∈ S(Xreg, t) such that
h0(Pr, I(2S,X)(1)) > 0 and h1(Pr, I(2S,X)(1)) > 0. The closed Terracini locus
or Terracini t-locus is the closure of T1(X, t) in the Hilbert scheme of X or
(easier) in the t-symmetric power X(t) of X.

For any integer t > 0 the t-secant variety σt(X) ⊆ X is the closure in Pr
of the union of all linear spaces 〈S〉, where S is a subset of X with cardinality
t and 〈 〉 denotes the linear span. Let rgen(X) denote the minimal integer t
such that σt(X) = Pr. The embedded variety X is said to be secant defective
if there is a positive integer t such that dimσt(X) < min{r, t(n + 1) − 1}.
Obviously, if X is secant defective, then there is an integer t ≤ d r+1

n+1e such

that dimσt(X) < min{r, t(n + 1) − 1}. If X is not secant defective, then
rgen(X) = d(r + 1)/(n + 1)e and we set rcrit(X) := d(r + 1)/(n + 1)e. If X
is secant defective, let rdef(X) denote the first integer t ≤ d(r + 1)/(n + 1)e
such that dimσt(X) ≤ min{r − 1, t(n+ 1)− 2}. If X is secant defective, then
T1(X, t) = S(Xreg, t) for all t ≥ rdef(X) by the semicontinuity theorem for
cohomology and the Terracini lemma ([1, Cor. 1.11]). If X is secant defective,
then we set rcrit(X) := rdef(X)− 1. We have δ(2S,X)) > 0 for all t > rcrit(X)
and all S ∈ S(Xreg, t) and for t = d(r+ 1)/(n+ 1)e if X is not secant defective
and (r + 1)/(n + 1) /∈ Z. Thus the largest t to be considered for a general
S ∈ S(Xreg, t) is rcrit(X)−1 if either X is secant defective or (r+1)/(n+1) /∈ Z
and rcrit(X) if X is not secant defective and r + 1 ≡ 0 (mod n + 1). The
latter is called the perfect case and it is rare. We may have T1(Xreg, t) 6= ∅
even if t > rcrit(X), but of course in this range S ∈ T1(Xreg, t) if and only
if 〈(2S,X)〉 6= Pr. It is very easy to give examples of such triples (X, t, S)
(Example 2.4).

Many papers studied if a general S ∈ S(Xreg, t) is in the open Terracini
t-locus of X, because by the Terracini lemma h0(I(2S,X)(1)) = r − dimσt(X)
for a general S ([1, Cor. 1.11], [10]). A few recent papers aim to give a finer
description of the sets T1(Xreg, t) ([2, 3]).

By the semicontinuity theorem for cohomology T1(Xreg, t) = S(Xreg, t) if
and only if T1(Xreg, t) contains a general S ∈ S(Xreg, t). Thus the Terracini
lemma ([1, Cor. 1.11]) gives that T1(Xreg, t) = S(Xreg, t) if and only if σt(X) 6=
Pr and dimσt(X) ≤ t(n + 1) − 2. We study the next case, i.e., if T1(Xreg, t)
contains a hypersurface of S(Xreg, t), for the first integer t for which the t-secant
variety of X may fill the whole Pr. We prove the following result.

Theorem 1.1. Let X ⊂ Pr be an integral and non-degenerate variety. Set
n := dimX and t := d(r + 1)/(n+ 1)e. If n = 1 assume X smooth.

(a) If X is secant defective, then T1(Xreg, t) = S(Xreg, t).
(b) Assume X not secant defective and r + 1 ≡ 0 (mod n+ 1). Then

(i) T1(Xreg, t) = ∅ if and only if X is a rational normal curve.
(ii) If X is not a rational normal curve, then T1(Xreg, t) contains a

hypersurface of S(Xreg, t).
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For arbitrary r, n and t we give an explicit criteria to check if a given
S ∈ S(Xreg, t) is an element of T1(Xreg, t).

Theorem 1.2. Fix a finite set S ⊂ Xreg and set t := #S. Assume the
existence of line bundles L,R on X and linear subspaces V ⊆ H0(L), W ⊆
H0(R) such that L ⊗ R ∼= OX(1) and this isomorphism sends V ⊗ W into
the image of the restriction map H0(OPr (1)) → H0(OX(1)). Assume that
(2a,X) ∪ (S \ {a}) gives t + n independent conditions to V for all a ∈ S and
that S gives t independent conditions to W . Then S /∈ T1(Xreg, t).

Note that in Theorem 1.2 we do not assume that L or R is very ample, but L
must induce an embedding at all points of S, otherwise one of the assumptions
of the theorem is not satisfied.

Theorem 1.2 may be applied in specific cases. For instance the next theorem
is an easy application of Theorem 1.2 to the Segre-Veronese varieties. We recall
that the Segre-Veronese varieties determine the partially symmetric rank of
partially symmetric tensors.

Let Y = Pn1 ×· · ·×Pnk be a multiprojective space. For any E ⊆ {1, . . . , k},
E 6= ∅, set Y (E) :=

∏
i∈E Pni and let πE : Y → Y (E) denote the projection.

Theorem 1.3. Let Y = Pn1 × · · · × Pnk be a multiprojective space. Fix
(d1, . . . , dk) ∈ Nk such that di > 0 for all i. Let νd1,...,dk : Y → Pr, r =

−1 +
∏k
i=1

(
di+ni

ni

)
, be the Segre-Veronese embedding of Y with multidegree

(d1, . . . , dk). Set X := νd1,...,dk(Y ). Fix a finite set S ⊂ X, say S = νd1,...,dk(A)
with A ⊂ Y . Assume the existence of (a1, . . . , ak) ∈ Nk such that 0 < ai ≤ di
for all i, h1(Y, I(2a,Y )∪A(a1, . . . , ak)) = 0 for all a ∈ A and h1(Y, IA(d1 −
a1, . . . , dk − ak)) = 0. Then S /∈ T1(X,#A).

Since in Theorem 1.3 we assume ai > 0 for all i, if #A ≥ 2 we cannot apply
it to the Segre embedding of Y . For the Segre embedding we prove a similar
result (Theorem 1.4). To state it we use the following notation.

Theorem 1.4. Let Y = Pn1 × · · · × Pnk be a multiprojective space and let

ν : Y → Pr, r = −1 +
∏k
i=1(ni + 1), be the Segre embedding of Y . Set

X := ν(Y ). Fix a finite set A ⊂ Y . Assume the existence of E ⊆ {1, . . . , k}
with the following properties:

(1) h1(Y, IA({1, . . . , k} \ E)) = 0,
(2) πE|A is injective,

(3) for each o ∈ A we have h1(Y (E), IπE(A)∪(2o,Y (E))(1, . . . , 1)) = 0.

Then ν(A) /∈ T1(X,#A).

2. Curves

Let X ⊂ Pr, r > 1, be an integral and non-degenerate curve. It is well-
known that X is not defective ([1, Remark 1.6]). Thus rgen(X) = d(r + 1)/2e
and T1(Xreg, 1 + r/2) = S(Xreg, 1 + r/2) if r is even.
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Remark 2.1. Let X ⊂ Pr be a rational normal curve. Since each line bundle on
X with degree ≥ −1 has no higher cohomology, every zero dimensional scheme
Z ⊂ X is linearly independent if deg(Z) ≤ r+1 and spans Pr if deg(Z) ≥ r+1.
Thus T1(X, t) = 0 if 2t ≤ r + 1 and h0(I(2S,X)(1)) > 0 for all S ∈ S(X, t) it
2t ≥ r + 2.

Remark 2.2. Let X ⊂ Pr, r ≥ 4, be an integral and non-degenerate curve.
Set d := deg(X). The algebraic set T1(Xreg, 2) has codimension at least 2 in
S(Xreg, 2), i.e., T1(Xreg, 2) is finite or empty, if and only if for a general p ∈ Xreg

the line TpX meetsXreg only at p and the linear projection from TpX induces an
unramified morphism γ : Xreg\{p} → P2. The first condition is always satisfied
(and even TpX ∩ (X \ {p}) = ∅) if X is smooth or at least the normalization
map of X is unramified by a theorem due to H. Kaji ([8, Theorem 3.1 and
Remark 3.8]) and in a few other cases, but it is not known in general ([4, 9]).
In positive characteristic the first condition fails even for some smooth curves
([8, Example 4.1]). Assume TpX∩X = {p} set-theoretically. Since p is general,
TpX has order of contact 2 with X at p. Since p ∈ Xreg, the linear projection
from p induces a morphism ` : X → Pr−2 such that deg(`) ◦deg(`(X)) = d− 2.

Lemma 2.3. Assume that r is odd, that X is smooth and that X is not a
rational normal curve. Fix a general A ∈ S(X, (r − 1)/2). Then

(a) 〈2p〉 ∩ 〈2A〉 = ∅ for a general p ∈ X.
(b) There is p ∈ Xreg \A such that 〈2p〉 ∩ 〈2A〉 6= ∅.

Proof. Since σ(r+1)/2(X) = Pr ([1, Remark 1.6]) part (a) follows from the
Terracini lemma ([1, Corollary 1.11]) and the fact that for a general p the set
A∪ {p} is a general element of S(Xreg, (r+ 1)/2). Now we prove part (b). Set
d := deg(X). By assumption d > r. By Remark 2.2 the scheme 〈A〉 ∩ X is
equal to (2A,X) and it has degree r − 1. Let `〈A〉 : Pr \ 〈A〉 → P1 denote the
linear projection from the linear space 〈A〉. Since X is a smooth curve and
〈A〉∩X \A = ∅, `〈A〉|X\A extends to a morphism ` : X → P1. Since 〈A〉∩X =
(2A,X), deg(`) = d − r + 1 ≥ 2. Since X is smooth, ` must be ramified. Fix
a ramification point p ∈ X of `. If p /∈ A, then TpX ∩ 〈(2A,X)〉 6= ∅, proving
the theorem in this case by Remark 2.2. Now assume p ∈ A. We get that the
osculating plane O(X, 2, p) of X at p is contained in 〈(2A,X)〉, contradicting
[7] and the generality of A. �

Proof of Theorem 1.1 for smooth curves. No non-degenerate curve is secant
defective ([1, Remark 1.6]). Remark 2.1 describes the rational normal curve.

Now assume that X is not a rational normal curve. Since σ(r+1)/2(X) = Pr,
〈2S〉 = Pr for a general S ∈ S(Xreg, (r + 1)/2), T1(X, (r + 1)/2) is a proper
closed subset of S(X, (r + 1)/2). Lemma 2.3 says that for a general A ⊂ Xreg

with cardinality (r−1)/2 there is p ∈ Xreg \A such that 〈2p〉∩〈2A〉 6= ∅. Hence
T1(X, (r + 1)/2) 6= ∅ and T1(X, (r + 1)/2) has codimension 1 in S(Xreg, (r +
1)/2). �
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Example 2.4. Fix integers e ≥ 1, r ≥ max{3, e+1} and t such that 2t ≥ e+2.
Set d := r + 2t − e − 1. Let C ⊂ Pd be a degree d rational normal curve. Fix
E ⊂ C such that #E = t. Since C is a rational normal curve and 2t ≤ d− 1,
the scheme (2E,C) is linearly independent, i.e., U := 〈(2E,C)〉 has dimension
2t − 1. Since C is a rational normal curve, (2E,C) is the scheme-theoretic
intersection of C and U . Let V ⊂ U be a general linear subspace of dimension
d − r − 1 = 2t − e − 2. Since V is general in U and it has codimension at
least 2 in U , V meets no line tangent to C at one of the points of E and no
line spanned by 2 of the points of E. Let `V : Pd \ V → Pr denote the linear
projection from V . Since V ∩ C = ∅, `V |C : C → Pr is a morphism and `V (C)
is a non-degenerate curve. We claim that V is an embedding. It is sufficient to
prove that V ∩ σ2(X) = ∅. Since V is a general subspace of U of codimension
at least 2, it is sufficient to prove that dimU ∩ σ2(X) ≤ 1. Indeed, for any
o ∈ C \ E the scheme 2E ∪ {o} is linearly independent because it has degree
2t + 1 ≤ d − 1. Set W := `V (U \ V ). W is a dimension e linear subspace
spanned by t tangent lines of the smooth curve X := `V (C). If t > (r + 1)/2,
then t > rgen(X).

3. Proof of Theorem 1.1

Let X ⊂ Pr be an integral and non-degenerate n-dimensional variety. Let
G(n+1, r+1) denote the Grassmanniann of all n-dimensional linear subspaces
of Pr. Let Φ ⊂ G(n+ 1, r + 1) be the set of all tangent spaces TpX, p ∈ Xreg.
Let Ψ be the closure of Φ in G(n + 1, r + 1). The algebraic sets Φ and Ψ are
irreducible and dim Φ = dim Ψ.

Remark 3.1. We have dim Φ < n if and only if a general TpX is tangent to Xreg

at infinitely many points. Since we are in characteristic zero, the contact locus
of a general TpX is a linear space containing p. If X is smooth, then dim Φ = n
because the Gaussian map of a smooth X ⊂ Pr is finite ([11, Corollary I.2.8,
Theorem 2.3]).

Proof of Theorem 1.1. Since we proved the case n = 1, we may assume n ≥ 2.
Take a general A ∈ S(Xreg, t − 1) and set L := 〈2A〉. Since X is not secant
defective, L has codimension n + 1. Let W ⊂ G(n + 1, r + 1) denote the set
of all n-dimensional linear subspaces M ⊂ Pr such that W ∩ L 6= ∅. The
Schubert cycle W is a hypersurface of G(n+1, r+1) and Pic(G(n+1, r+1)) =
ZOG(n+1,r+1)(W ). Since X is not secant defective, Φ is not contained in W and
hence Ψ is not contained in W . Since OG(n+1,r+1) is very ample and Ψ is not
contained in W , W ∩Ψ 6= ∅ and dim(W ∩Ψ) = dimW −1. In particular if X is
smooth and hence dim Ψ ≥ 2 ([11, Corollary I.2.8]), then A∪{p} ∈ T1(Xreg, t)
for an (n − 1)-dimensional family of p ∈ Xreg \ A. Thus varying A we get
dimT1(Xreg, t) = nt− 1 if n ≥ 2, X is smooth (and not secant defective).

With no smoothness assumption on X we have dim Ψ = 1 only for very
particular varieties X (e.g. for n = 2 only cones and developable surfaces) and
all of them are ruled by (n− 1)-dimensional linear subspaces. Call γ : Xreg →
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G(n + 1, r + 1) the Gaussian map. Fix a ∈ A. Since the closure of γ−1(γ(a))
is an (n− 1)-dimensional linear space δ(2(A∪{p})) > 0 for any p ∈ γ−1X (γ(a)),
concluding the proof in this case.

Thus we may assume dim Ψ ≥ 2. Since A ⊆ Φ ∩ L, Φ ∩ L 6= ∅. Varying A
we see that to conclude the proof it is sufficient to use that Φ∩L 6= ∅, because
dim Φ ∩ L = n − 1 and hence (by the assumption n ≥ 2) Φ ∩ L is strictly
contained in A. �

4. Proofs of Theorems 1.2, 1.3 and 1.4

For any projective variety W , any effective divisor D ⊂ X and any zero-
dimensional scheme Z ⊂ W the residual scheme ResD(Z) of Z with respect
to D is the closed subsheme of W with IZ : ID as its ideal sheaf. We have
ResD(Z) ⊆ Z (and hence ResD(Z) is a zero-dimensional scheme) and deg(Z) =
deg(Z∩D)+deg(ResD(Z)). For any line bundle L on W the following sequence
(often called the residual exact sequence of D)

0→ IResD(Z) ⊗ L(−D)→ IZ ⊗ L → IZ∩D,D ⊗ L|D → 0

is exact. If A,B are zero-dimensional subschemes of W and A ∩ B = ∅, then
ResD(A ∪B) = ResD(A) ∪ ResD(B).

Remark 4.1. Fix o ∈ Wreg ∩D. If o ∈ Dreg, then (2o,W ) ∩D = (2o,D) and
ResD((2o,W )) = {o}. If o ∈ Sing(D), then (2o,W ) ⊂ D and ResD((2o,W )) =
∅.

Proof of Theorem 1.2. It is sufficient to prove that (2S,X) is linearly inde-
pendent. Since (S \ {a}) ∪ (2a,X) gives t + n independent conditions to V ,
dimV ≥ t+ n. Take a general f ∈ V such that f(a) = 0 for all a ∈ S and set
G := {f = 0} ∈ |V |. The set G is an effective Cartier divisor of X containing
S. Fix a ∈ S. Since (2a,X) ∪ S gives independent conditions to V and f is
general, G is smooth at all points of S. Thus ResG((2S,X)) = S (Remark 4.1).
Since S gives t independent conditions to W and V ⊗W goes into the image
of the restriction map H0(OPr (1))→ H0(OX(1)), the residual exact sequence
of G gives that (2S,X) is linearly independent. �

Proof of Theorem 1.3. This result is a very particular case of Theorem 1.2
with as X the image of Y and, up to the identification of X and Y , L =
OY (a1, . . . , ak), V = H0(L), R = OY (d1 − a1, . . . , dk − ak) and W = H0(R).

�

Proof of Theorem 1.4. We follow the proofs of Theorems 1.2 and 1.3. Since
E 6= {1, . . . , k}, h1(Y, IS∪(2o,Y )(E)) > 0. To carry over the proof of Theo-
rem 1.2 we only need to prove that a general G ∈ |IA(E)| is smooth at all
points of A. Since A is finite and the projective space |IA(E)| is an irre-
ducible variety, it is sufficient to prove that for every o ∈ A the hypersurface
G is smooth at o. Note that G ∼= G′ × Y (F ) with G′ a general element
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of PH0(Y (E), IπE(A)∪(2o,Y (E))(1, . . . , 1)). Since G′ is smooth at πE(o), G is
smooth at o. �
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