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RATIONAL HOMOLOGY DISK SMOOTHINGS AND

LEFSCHETZ FIBRATIONS

Hakho Choi

Abstract. In this article, we generalize the results discussed in [6] by in-
troducing a genus to generic fibers of Lefschetz fibrations. That is, we give

families of relations in the mapping class groups of genus-1 surfaces with

boundaries that represent rational homology disk smoothings of weighted
homogeneous surface singularities whose resolution graphs are 3-legged

with a bad central vertex.

1. Introduction

Rational blowdown surgery, which was introduced by Fintushel-Stern [8] and
generalized by J. Park [15], is a surgery operation that replaces a linear plumb-
ing Cp,q of 2-spheres with a rational homology ball Bp,q (i.e., H∗(Bp,q,Q) ∼=
H∗(B

4,Q)). As rational blowdown surgery reduces the second Betti number
and the Seiberg-Witten invariants of the surgered manifold are determined
by that of the original manifold under mild conditions, it is one of the most
powerful tools in constructing smooth 4-manifolds with small Euler character-
istic [9, 16,19]. Further, it can be used to construct simply connected complex
surface of general type with pg = 0 and K2 = 2, 3, 4 because Cp,q is the min-
imal resolution of cyclic quotient surfaces singularities Ap2,pq−1, and Bp,q is
the rational homology disk smoothing (i.e., Milnor fiber with vanishing Milnor
number) of Ap2,pq−1 [13,17,18]. From these perspectives, researchers attempted
to identify other normal surface singularities admitting rational homology disk
smoothing (QHD for short). In particular, there is a complete classification of
resolution graphs admitting QHD smoothing for the case of weighted homoge-
neous surface singularities [2,20]. They are all 3-legged or 4-legged graphs. We
focus on 3-legged graphs in this article (refer to Figure 1 for the complete list,
and for an exhaustive list of 4-legged cases, refer to Figure 2 in [2]).
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Figure 1. 3-legged resolution graphs admitting QHD
smoothing (p, q, r ≥ 0)

In this article, we aim to interpret QHD smoothings in terms of Lefschetz
fibrations. A QHD smoothing is a Stein filling of the link of a weighted homo-
geneous surface singularity with the Milnor fillable contact structure. As the
existence of positive allowable Lefschetz fibration (PALF for short) on a Stein
filling is well known in general [1,14], an explicit monodromy description of the
filling is of great interest. The simplest example of this is the famous lantern
relation abcd = xyz in the mapping class group of 4-holed sphere, where each
letter stands for right-handed Dehn twists of curves, as depicted in Figure 2.
Here, a Lefschetz fibration X with monodromy abcd is diffeomorphic to the
minimal resolution of A4,1 singularity whose link is diffeomorphic to a lens
space L(4, 1) while a Lefschetz fibration Y with monodromy xyz is diffeomor-
phic to the QHD smoothing of the singularity [5]. Furthermore, the equality
in the relation implies that the boundaries of X and Y are diffeomorphic and
the induced contact structures on the boundaries are isotopic to each other,
which is isotopic to the Milnor fillable contact structure. Therefore, asking
whether other realtions that describe QHD smoothings exist is natural. In [6],
relations in the mapping class group of planar surfaces corresponding to QHD
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Figure 2. Lantern relation

smoothings of Ap2,pq−1 and weighted homogeneous surface singularities with
resolution graphs belonging to (a), (b) and (c) families in Figure 1 were given
by Endo-Mark-Van Horn-Morris. In the resolution graphs depicted in Figure 1,
each vertex v corresponds to an irreducible component Ev of the exceptional
divisor E, which is topologically 2-sphere, and each edge corresponds to an
intersection between the irreducible components Ev. We denote the number of
edges connected to a vertex v as the valence of v, and the self-intersection of Ev
as the degree of v. If the absolute value of the degree of v is strictly less than
the valence of v, we call the vertex v a bad vertex. Note that central vertices in
(a), (b), and (c) families in Figure 1 are not bad vertices, while central vertices
in other families are bad. In this article, we construct genus-1 Lefschetz fibra-
tions on QHD smoothings containing bad central vertices in their resolution
graphs.

Theorem 1.1. For each resolution graph Γ in Figure 1 with bad central vertex,
there is a relation WΓ = W ′Γ between words of right-handed Dehn twists in
mapping class group of a genus-1 surface with boundaries such that Lefschetz
fibration XΓ with monodromy WΓ is diffeomorphic to the minimal resolution of
corresponding singularity SΓ and Lefschetz fibration YΓ with monodromy W ′Γ is
a rational homology ball.

To prove Theorem 1.1, we proceed as follows: For each resolution graph
Γ in Figure 1 with a bad central vertex, we construct a genus-1 PALF XΓ

on the minimal resolution of the singularity SΓ corresponding to Γ and verify
whether the induced contact structure on the boundary is the Milnor fillable
contact structure by computing the first Chern class. Then, starting from the
global monodromy WΓ of the XΓ, we get another positive word W ′Γ = WΓ

of right-handed Dehn twists by monodromy substitutions after introducing
appropriate canceling pairs so that PALF YΓ with global monodromy W ′Γ is
rationally homology ball filling of the link of SΓ.

Remark 1.2. From the Lefschetz fibration YΓ we constructed, we obtain a
rational homology ball filling of the link of SΓ. Hence, one may ask whether
the total space of YΓ is symplectic deformation equivalent or diffeomorphic to
a QHD smoothing of SΓ, which is given by complement of the compactifying
divisor KΓ in a rational surface. By analyzing the method of constructing
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QHD smoothings, M. Bhupal and A. Stipsicz demonstrated that if Γ is one
of the resolution graphs in Figure 1 (a), (b), (c), (d), (e), (f) or (g), then
rational homology ball filling of the link of SΓ with the Milnor fillable contact
structure is symplectically unique [3, Theorem 1.1]. We expect this result to be
valid for the (h), (i) and (j) families. However, the uniqueness of the symplectic
deformation or diffeomorphism type of rational homology ball filling is unknown
for those families.

Acknowledgements. The author thanks Kyungbae Park, Jongil Park and Ki-
Heon Yun for their interests and valuable comments. The author is supported
by a KIAS Individual Grant (MG071002) at Korea Institute for Advanced
Study.

2. Monodromy relations

As the first step of the proof of Theorem 1.1, we construct genus-1 Lefschetz
fibrations on the minimal resolutions. If there is no bad vertex in the resolu-
tion graph Γ, there is well-known genus-0 PALF of Gay-Mark on the minimal
resolution [10] (See also [7]): We consider the 2-sphere Σi with bi holes for each
vertex vi with degree −bi. Then, the generic fiber Σ is obtained by gluing Σi
along their boundaries according to Γ, and the global monodromy is given by
the product of right-handed Dehn twists on curves parallel to the boundary of
each Σi. We end up with only one right-handed Dehn twist on the connecting
neck. For the resolution graphs in Figure 1 with bad central vertex, we con-
struct PALFs on the minimal resolutions by introducing a genus on the generic
fibers, as in [4].

−2 −b1−ai

−c1

−a1 −bj

−ck

· · ·· · ·

...

Figure 3. 3-legged plumbing graph Γ with bad central vertex

First, we construct genus-0 Lefschetz fibrations on horizontal and vertical
part of a plumbing graph Γ given in Figure 3 as illustrated in Figure 4 and
Figure 5: Let Σ1 and Σ2 be the generic fibers for horizontal and vertical parts,
respectively. We denote a simple closed curve in Σ1 enclosing ith hole by αi
and a simple closed curve in Σ1 enclosing all holes from the first to ith hole
by γi. Further, we denote a simple closed curve in Σ2 enclosing ith hole by βi
and a simple closed curve in Σ2 enclosing all holes from the first to ith hole
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···
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· · · · · ·
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Figure 4. Global monodromy: Waγ
2
NWb

c1 − 2

···

ck − 2

c1 − 1

(c2 + · · · + ck)

−2(k − 1)

Figure 5. Global monodromy: β1 · · ·βc1−1δc1−1Wc

by δi. The global monodromy of horizontal part can be written as Waγ
2
NWb,

where Wa is a word of right-handed Dehn twists along curves from degree −an
vertices, Wb is a word of right-handed Dehn twists along curves from degree
−bm vertices, and N = (a1 + · · ·+ai)−2i+1. Similarly, the global monodromy
corresponding to the vertical part can be written as β1 · · ·βc1−1δc1−1Wc, where
Wc is a word of right-handed Dehn twists along curves from degree −cl vertices
with l = 2, . . . , k.

Now, we consider a genus-1 surface ΣΓ obtained from Σ1 by attaching b1(Σ2)
1-handles as in Figure 6. Then, we can naturally consider simple closed curves
in Σi as simple closed curves in ΣΓ.

Proposition 2.1. Let XΓ be a positive allowable Lefschetz fibration with
generic fiber ΣΓ, and global monodromy β1 · · ·βc1−1WaγNδc1−1WcγNWb. Then
total space of XΓ is diffeomorphic to the plumbing of 2-spheres according to Γ.
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· · ·

(c2 + · · · + ck)
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· · ·

N = (a1 + · · · + ai) − 2i+ 1 (b1 + · · · + bj) − 2j

Figure 6. Global monodromy: β1 · · ·βc1−1WaγNδc1−1WcγNWb

Furthermore, the first Chern class of XΓ satisfies the adjunction equality for
each vertex in Γ.

Proof. We first verify that a genus-0 PALF XL of Gay-Mark on a linear plumb-
ing L (see Figure 7) is actually diffeomorphic to the plumbing of spheres. From
the Lefschetz fibration structure of XL, we obtain a Kirby diagram as in Fig-
ure 7: As the generic fiber of W is N = (a1+· · ·+ai)−2i+1 holed disk, we have
one 0-handle, N 1-handles and a 2-handle for each vanishing cycle as in Fig-
ure 7. Note that all the framings of 2-handles are −1 with respect to the black-
board framing. First, we slide a 2-handle corresponding to γN over 2-handles
corresponding to αn with n = N−ai+3, . . . , N , and γN−ai+2 to unlink from the
1-handles. After cancelling 1-handles with αn (n = N−ai+3, . . . , N) 2-handles,
we obtain the last diagram in Figure 7. A 2-handle represented by unknot in
the last diagram in Figure 7 corresponds to degree −ai vertex vi in L. Thus, the
homology class of vi can be represented by γN−γN−ai+2−αN−ai+3−· · ·−αN .
We also verify that the first Chern class c1(XL) satisfies the adjunction equality
on vi: The first Chern class c1(XL) is represented by a co-cycle whose value
on the 2-handle corresponding to a vanishing cycle is the rotation number of
the vanishing cycle [12]. And if we fix a trivialization of the tangent bundle of
fiber as a natural extension of a trivialization of the tangent bundle of R2, the
rotation numbers of all vanishing cycles of XL are 1. Then a simple computa-
tion shows that the adjunction equality is satisfied on vi. The aforementioned
process can be repeated until a Kirby diagram of the plumbing of 2-spheres
according to L is obtained.

Subsequently, we verify that the total space of XΓ is diffeomorphic to the
plumbing of 2-spheres according to Γ. From the Lefschetz fibration structure
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Figure 7. Linear plumbing of L and part of Kirby diagram of W

of XΓ, we get a Kirby diagram of XΓ as in Figure 8. The white and gray 1-
handles correspond to the horizontal and vertical parts of Γ, respectively, and
all the framings of 2-handles are −1 with respect to the blackboard framing.
As the Kirby diagrams for the horizontal and vertical parts are embedded
in the diagram for XΓ, the plumbing of unknots is obtained with respect to
the horizontal and vertical parts by sliding and canceling handles as described
previously. The linking of horizontal and vertical parts is derived from linkings
between 2-handles corresponding to β1, δc1−1 and two γN . The homology class
of each vertex v is represented by same vanishing cycles derived from linear
plumbings. Thus, the first Chern class of XΓ satisfies adjunction equality on
v. �

If Γ is one of the resolution graphs with bad central vertices in Figure 1,
then the PALF XΓ induces the Milnor fillable contact structure on the bound-
ary: Let Y be the 3-manifold diffeomorphic to the boundary of XΓ. Then
Y is a small Seifert 3-manifold Y (−2; (α1, β1), (α2, β2), (α3, β3)). If Y is an L-
space, there is a classification of tight contact structures on Y given by Ghiggini
(Theorem 1.3 in [11]): A tight contact structure ξ of L is determined by Spinc

structure tξ induced by ξ and filled by the Stein manifolds described via Legen-
drian surgery on all possible Legendrian realizations of the link corresponding
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· · ·
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Figure 8. Part of Kirby diagram of XΓ

to Γ. In particular, the Milnor fillable contact structure is filled by the Stein
manifold whose first Chern class satisfies the adjunction equality on each ver-
tex in Γ. On the other hand, the singularity corresponding to Γ is a rational
singularity, because it admits QHD smoothing. Therefore, the link of the sin-
gularity, which is diffeomorphic to the boundary of XΓ, is L-space. Hence,
by the theorem of Ghiggini, the PALF XΓ we constructed induces the Milnor
fillable contact structure on the boundary of XΓ.

Remark 2.2. Using a technique similar to that described in Proposition 2.1, we
can construct a genus-1 PALF structure on a 4-legged resolution graph with a
central −3 vertex whose first Chern class satisfies the adjunction equality on
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each vertex. But it is unknown whether the induced contact structure of the
PALF is the Milnor fillable due to the lack of a classification of tight contact
structures.

We now give an explicit relation WΓ = W ′Γ between two words of right-
handed Dehn twists on simple closed curves in genus-1 surface ΣΓ where WΓ is
the global monodromy of XΓ while the PALF YΓ with the global monodromy
W ′Γ is a rational homology ball filling. Because of the homology condition on
YΓ, the length of W ′Γ must be equal to b1(ΣΓ). Conversely, if the length of W ′Γ
is equal to b1(ΣΓ), then YΓ is a rational homology ball since the boundary of
XΓ is rational homology 3-sphere. We denote the right-handed Dehn twist on
a curve α by α and also by tα and use functional notation for the products of
Dehn twists.

2.1. Relations for (d) and (f) family

−2 −2

−2 −2 −3 −2 −2

−(q + 5)

−(r + 4)

· · · · · ·
q r

−2 −2

−2 −2

−(q + 6)

−3

· · ·
q

... r + 2

· · ·

q + 3

Figure 9. Resolution graph Γq,r and generic fiber ΣΓq,r
for

(d) and (f) family

Let Γq,r(with r ≥ 0) be a resolution graph of (d) family and Γq,−1 be a
resolution graph of (f) family as in Figure 9. Then the generic fiber for XΓq,r

is ΣΓq,r
as in Figure 9 and the global monodromy of XΓq,r

is given by

β1 · · ·βr+3α
2
1δr+3α

q+1
1 α2γ

r+1
2 α3 · · ·αq+5γq+5.

We introduce a cancelling pair δ−1
r+3 ·δr+3 and rearrange the word using Hurwitz

moves.

β1 · · ·βr+3α
2
1δr+3α

q+1
1 α2γ

r+1
2 α3 · · ·αq+5γq+5

= β1 · · ·βr+3 · δ−1
r+3 · δr+3 · α2

1δr+3α
q+1
1 α2γ

r+1
2 α3 · · ·αq+5γq+5

= β1 · · ·βr+3γ
r+1
2 · δ−1

r+3 · α
q+3
1 α2α3 · · ·αq+5γq+5

· (t−(q+3)
α1

· t−1
α2

)(δr+3) · (t−(q+1)
α1

· t−1
α2

)(δr+3).
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Let cr = t−1
α2

(δr+3). Then cr and α1 intersect geometrically once. Because of
the braid relation cr · α1 · cr = α1 · cr · α1, we have

(t−(q+3)
α1

· t−1
α2

)(δr+3) · (t−(q+1)
α1

· t−1
α2

)(δr+3)

= α
−(q+3)
1 · cr · α2

1 · cr · α
(q+1)
1

= α
−(q+3)
1 · cr · α1 · cr · α1 · cr · αq1

= α
−(q+2)
1 · cr · α2

1 · cr · α
q
1

...

= α−2
1 · cr · α2

1 · cr
= α−2

1 · cr · α2
1 · cr · α1 · α−1

1 ·
= α−2

1 · cr · α1 · cr · α1 · cr · α−1
1

= α−1
1 · cr · α1 · α1 · cr · α−1

1

= (t−1
α1

)(cr) · tα1(cr).

On the other hand, we have a daisy relation of the form

αq+3
1 α2 · · ·αq+5γq+5 = y1y2 · · · yq+5

with y1 = γ2 as in Figure 10 to Figure 11. Hence after a daisy substitution and

y1

... r + 2

· · ·

q + 3

y2

... r + 2

· · ·

q + 3

Figure 10. y1 and y2

Hurwitz moves, we have

β1 · · ·βr+3γ
r+1
2 · δ−1

r+3 · y1y2 · · · yq+5 · (t−1
α1

)(cr) · tα1
(cr)

= β1 · · ·βr+3γ
r+2
2 · δ−1

r+3 · y2 · · · yq+5 · (t−1
α1

)(cr) · tα1
(cr)

= Y2,r · · ·Yq+5,r · (tβ1 · t−1
δr+3
· t−1
α1

)(cr) · β1 · · ·βr+3 · tα1(cr) · γr+2
2 · δ−1

r+3,

where Yi,r = (tβ1
· t−1
δr+3

)(yi). Again, we have a daisy relation of the form

β1 · · ·βr+3 · tα1
(cr) · γr+2

2 = z1 · z2 · · · zr+3 · zr+4
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y3

... r + 2

· · ·

q + 3

yq+5

... r + 2

· · ·

q + 3

Figure 11. yi for i = 3, . . . , q + 5

with zr+4 = δr+3. See Figure 12 for corresponding curves in planar surface.
By performing a daisy substitution and cancelling zr+4 with δ−1

r+3, we get a
monodromy factorization W ′Γq,r

whose length is b1(ΣΓq,r ).

Y2,r · · ·Yq+5,r · (tβ1
· t−1
δr+3
· t−1
α1

)(cr) · z1 · · · zr+3.

tα1
(cr)

... r + 2

· · ·

q + 3

· · ·

r + 4

Figure 12. Corresponding curves for a daisy relation

2.2. Relations for (j) family

Let Γq be a resolution graph of (j) family as in Figure 13. Then the generic
fiber for XΓq

is Σr as in Figure 13 and the global monodromy of XΓq
is given

by
β1α

2
1β

q+1
1 β2 · · ·βq+3δq+3α1α2α3α4α5γ5.

We introduce a cancelling pair β−1 · β and rearrange the word using Hurwitz
moves where β is a simple closed curve in Σr as in Figure 13.

β1 · β−1 · β · α2
1β

q+1
1 β2 · · ·βq+3δq+3α1α2α3α4α5γ5

= β2 · · ·βq+3 · β−1 · β1βα
2
1β

q+1
1 δq+3α1α2α3α4α5γ5

= β2 · · ·βq+3 · β−1 · β1βα
2
1δq+3α1α2α3α4α5γ5 · ((t−1

α1
· t−1
α2

)(β1))q+1.
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−2 −2 −6

−2

−(q + 4)

−2

−2

q

... q + 2β

Figure 13. Resolution graph Γq and generic fiber ΣΓq
for (j) family

There is an obvious subsurface of Σq which is diffeomorphic to Σ0,−1 of Figure 9
so that image of each curve of Σ0,−1 in Σq is as follows:

β1 → β1

β2 → β

δ2 → δq+3

αi → αi

By performing a monodromy substitution corresponds to Γ0,−1 of (f) family,
we have

β2 · · ·βq+3 · β−1 · β1βα
2
1δq+3α1α2α3α4α5γ5 · ((t−1

α1
· t−1
α2

)(β1))q+1

= β2 · · ·βq+3 · β−1 · Yq,2 · · ·Yq,5 · (tβ1 · t−1
δq+3
· t−1
α1

)(cq) · zq,1zq,2 ·Bq+1

= Yq,2 · · ·Yq,5 · β2 · · ·βq+3

· (tβ1 · t−1
δq+3
· t−1
α1

)(cq) ·Bq+1 · β−1 · (t−(q+1)
B )(zq,1) · (t−(q+1)

B )(zq,2).

Here Yq,i and zq,j is image of Yi,−1 and zj of Σ0,−1 in Σq respectively, cq =
t−1
α2

(δq+3) and B = (t−1
α1
· t−1
α2

)(β1). We have a daisy relation of the form

β2 · · ·βq+3 · (tβ1
· t−1
δq+3
· t−1
α1

)(cq) ·Bq+1 = x1 · · ·xq+3

with xq+3 = β. See Figure 14 for corresponding curves in planar surface.
By performing a daisy substitution and cancelling xq+3 with β−1, we get a
monodromy factorization W ′Γq

whose length is b1(ΣΓq ).

Yq,2 · · ·Yq,5 · x1 · · ·xq+2 · (t−(q+1)
B )(zq,1) · (t−(q+1)

B )(zq,2).

2.3. Relations for (e) and (g) family

Let Γp,q,−1 be a resolution graph of (e) family and Γp,q,r(with r ≥ 0) be a
resolution graph of (g) family as in Figure 15. Then the generic fiber for XΓp,q,r

is Σp,q,r as in Figure 15 and the global monodromy of XΓp,q,r
is given by

β1 · · ·βp+2α1 · · ·αr+3γr+3δp+2γ
q+1
r+3αr+4γ

r+1
r+4αr+5γ

p+1
r+5αr+6 · · ·αr+q+7γr+q+7.



RATIONAL HOMOLOGY DISK SMOOTHINGS & LEFSCHETZ FIBRATIONS 239

q + 2

(tβ1 · t−1
δq+3

· t−1
α1 )(cq)

q + 2

B · · ·

q + 3

Figure 14. Corresponding curves for a daisy relation

−3 −2

−2 −2 −4 −2 −2

−(q + 4)

−(p+ 3)

· · · · · ·
q p

−(r + 4) −2

−2 −2 −3 −2 −2 −3 −2 −2

−(q + 4)

−(p+ 3)

· · · · · · · · ·
q r p

· · ·

β ... p+ 1

· · ·

r + 2 q + 3

Figure 15. Resolution graph Γp,q,r and generic fiber ΣΓp,q,r

for (e) and (g) family

We introduce cancelling pairs β−1 ·β , γ−1
r+2 ·γr+2 and γ−1

r+3 ·γr+3 and rearrange
the word using Hurwitz moves where β is a simple closed curve in Σp,q,r as in
Figure 15.

β1 · · ·βp+2α1 · · ·αr+3γr+3δp+2γ
q+1
r+3αr+4γ

r+1
r+4αr+5γ

p+1
r+5αr+6 · · ·αr+q+7γr+q+7

= β1 · · ·βp+2 · β−1 · β · α1 · · ·αr+2 · γ−1
r+2 · γr+2 · αr+3 · γ−1

r+3 · γr+3

· γr+3δp+2γ
q+1
r+3αr+4γ

r+1
r+4αr+5γ

p+1
r+5αr+6 · · ·αr+q+7γr+q+7

= β1 · · ·βp+2 · β−1 · α1 · · ·αr+2 · γ−1
r+2 · γ

−1
r+3

· βγr+2αr+3γ
2
r+3δp+2γ

q+1
r+3αr+4γ

r+1
r+4αr+5γ

p+1
r+5αr+6 · · ·αr+q+7γr+q+7

= β1 · · ·βp+2 · β−1 · α1 · · ·αr+2 · γ−1
r+2 · γ

−1
r+3 · γ

r+1
r+4 · γ

p
r+5
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· βγr+2αr+3γ
2
r+3δp+2γ

q+1
r+3αr+4αr+5γr+5αr+6 · · ·αr+q+7γr+q+7

= β2 · · ·βp+2 · β−1 · α1 · · ·αr+2 · γ−1
r+2 · γ

r+1
r+4 · γ

p
r+5 · (tβ1

(γr+3))−1

· βγr+2tβ1(αr+3)(tβ1(γr+3))2δp+2(tβ1(γr+3))q+1β1αr+4

· αr+5γr+5αr+6 · · ·αr+q+7γr+q+7

= β2 · · ·βp+2 · β−1 · α1 · · ·αr+2 · γ−1
r+2 · γ

r+1
r+4 · γ

p
r+5 · (tβ1

(γr+3))−1

· βγr+2tβ1
(αr+3)(tβ1

(γr+3))2δp+2(tβ1
(γr+3))q+1αr+4(t−1

αr+4
)(β1)

· αr+5γr+5αr+6 · · ·αr+q+7γr+q+7.

Let γ = tβ1(γr+3). Then γ and δp+2 intersect geometrically. Because of the
braid relation γ · δp+2 · γ = δp+2 · γ · δp+2, we have

γ2δp+2γ
q+1

= γ · δp+2 · γ · δp+2 · γq

= γ · δ2
p+2 · γ · δp+2 · γq−1

...

= γ · δq+1
p+2 · γ · δp+2

= γ · δq+2
p+2 · (t

−1
δp+2

)(γ)

= (tγ(δp+2))q+2 · γ · (t−1
δp+2

)(γ)

= (tγ(δp+2))q+3 · (t−1
δp+2
· t−1
γ · tδp+2

)(γ) (∵ (t−1
δp+2

)(γ) = tγ(δp+2)).

Back to the global monodromy, we have

β2 · · ·βp+2 · β−1 · α1 · · ·αr+2 · γ−1
r+2 · γ

r+1
r+4 · γ

p
r+5 · (tβ1

(γr+3))−1

· βγr+2tβ1(αr+3)(tγ(δp+2))q+3(t−1
δp+2
· t−1
γ · tδp+2)(γ)αr+4(t−1

αr+4
)(β1)

· αr+5γr+5αr+6 · · ·αr+q+7γr+q+7

= β2 · · ·βp+2 · β−1 · α1 · · ·αr+2 · γ−1
r+2 · γ

r+1
r+4 · γ

p
r+5 · (tβ1

(γr+3))−1

· βγr+2tβ1(αr+3)(tγ(δp+2))q+3αr+4(t−1
αr+4

· t−1
δp+2
· t−1
γ · tδp+2)(γ) · (t−1

αr+4
)(β1)

· αr+5γr+5αr+6 · · ·αr+q+7γr+q+7

= β2 · · ·βp+2 · β−1 · α1 · · ·αr+2 · γ−1
r+2 · γ

r+1
r+4 · γ

p
r+5 · (tβ1

(γr+3))−1

· γr+2 · tβ1(αr+3) · β · (tγ(δp+2))q+3αr+4αr+5γr+5αr+6 · · ·αr+q+7γr+q+7

· (t−1
αr+4

· t−1
δp+2
· t−1
γ · tδp+2

)(γ) · (t−1
αr+4

)(β1).

The underlined part can be seen an embedding of the linear plumbing Lq in
Figure 17: Let Lq be a linear plumbing and ΣLq be a generic fiber for XLq as
in Figure 17. Then the monodromy for XLq

can be written as

aq+3
1 a2a3a4b4a5 · · · aq+6bq+6,
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· · ·

tγ(δp+2) ... p+ 1

· · ·

r + 2 q + 3

Figure 16. tγ(δp+2) in Σγp,q,r

−2 · · · −2 −5

−(q + 4)
q + 2

· · ·
b4

q + 2

Figure 17. Linear plumbing Lq and the generic fiber ΣLq
for XLq

where ai is simple closed curve in ΣLq enclosing ith hole and bj is simple closed
curve in ΣLq enclosing from the first to ith holes. Then there is a planar
subsurface of ΣΓp,q,r

which is diffeomorphic to ΣLq
so that the image of each

curves are

a1 → tγ(δp+2)

a2 → β

ai → αr+i+1 (i = 3, . . . , q + 6)

b4 → γr+5

bq+6 → γr+q+7.

The linear plumbing Lq can be rationally blowdown and the relation in the
mapping class group of ΣLq for the rational blowdown was given by Endo-
Mark-Van Horn-Morris in [6].

aq+3
1 a2a3a4b4a5 · · · aq+6bq+6 = y1y2 · · · yq+6.

Let Yp,i,r a simple closed curve in ΣΓp,q,r
be the image of yi which can be

drawn as in Figure 18 to Figure 22. Then we have

β2 · · ·βp+2 · β−1 · α1 · · ·αr+2 · γ−1
r+2 · γ

r+1
r+4 · γ

p
r+5 · (tβ1

(γr+3))−1

· γr+2 · tβ1(αr+3) · β(tγ(δp+2))q+3αr+4αr+5γr+5αr+6 · · ·αr+q+7γr+q+7
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· · ·

y1

q + 2

· · ·

Yp,1,r

... p+ 1

· · ·

r + 2 q + 3

Figure 18. y1 and Yp,1,r = (t−1
αr+4

· t−1
β1
· tαr+4)(Yp,1,r)

· · ·

y2

q + 2

· · ·

Yp,2,r

... p+ 1

· · ·

r + 2 q + 3

Figure 19. y2 and Yp,2,r

· (t−1
αr+4

· t−1
δp+2
· t−1
γ · tδp+2

)(γ) · (t−1
αr+4

)(β1)

= β2 · · ·βp+2 · β−1 · α1 · · ·αr+2 · γ−1
r+2 · γ

r+1
r+4 · γ

p
r+5 · (tβ1

(γr+3))−1

· γr+2 · tβ1
(αr+3) · Yp,1,r · · ·Yp,q+6,r · (t−1

αr+4
· t−1
δp+2
· t−1
γ · tδp+2)(γ) · (t−1

αr+4
)(β1)

= β2 · · ·βp+2 · β−1 · α1 · · ·αr+2 · γ−1
r+2 · γ

r+1
r+4 · γ

p
r+5

· (tβ1
(γr+3))−1 · γr+2 · tβ1

(αr+3) · (t−1
αr+4

)(β1) · (t−1
αr+4

· t−1
β1
· tαr+4

)(Yp,1,r)

· (t−1
αr+4

· t−1
β1
· tαr+4

)(Yp,1,r) · · · (t−1
αr+4

· t−1
β1
· tαr+4

)(Yp,q+6,r)

· (t−1
αr+4

· t−1
β1
· t−1
δp+2
· t−1
γ · tδp+2

)(γ).

Note that

γr+2 · tβ1(αr+3) · (t−1
αr+4

)(β1) · (t−1
αr+4

· t−1
β1
· tαr+4)(Yp,1,r)

= tβ1
(γr+2) · tβ1

(αr+3) · tβ1
(αr+4) · tβ1

(γr+4)

= tβ1(γr+3) · tβ1(a) · tβ1(b),

where a and b are simple closed curves as in Figure 23 due to the lantern rela-
tion. After a lantern substitution and cancelling (tβ1

(tγr+3
))−1 with tβ1

(tγr+3
),
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· · ·

y3

q + 2

· · ·

Yp,3,r

... p+ 1

· · ·

r + 2 q + 3

· · ·

yq+4

q + 2

...

· · ·

Yp,q+4,r

... p+ 1

r + 2 q + 2

Figure 20. yi and Yp,i,r for (i = 3, . . . , q + 4)

· · ·

yq+5

q + 2

· · ·

Yp,q+5,r

... p+ 1

· · ·

r + 2 q + 3

Figure 21. yq+5 and Yp,q+5,r = (t−1
αr+4

· t−1
β1
· tαr+4

)(Yp,q+5,r)

we have

β2 · · ·βp+2 · β−1 · α1 · · ·αr+2 · γ−1
r+2 · γ

r+1
r+4 · γ

p
r+5

· (tβ1
(γr+3))−1 · γr+2 · tβ1

(αr+3) · (t−1
αr+4

)(β1) · (t−1
αr+4

· t−1
β1
· tαr+4

)(Yp,1,r)

· (t−1
αr+4

· t−1
β1
· tαr+4)(Yp,2,r) · · · (t−1

αr+4
· t−1
β1
· tαr+4)(Yp,q+6,r)

· (t−1
αr+4

· t−1
β1
· t−1
δp+2
· t−1
γ · tδp+2

)(γ)

= β2 · · ·βp+2 · β−1 · α1 · · ·αr+2 · γ−1
r+2 · γ

r+1
r+4 · γ

p
r+5 · tβ1

(a) · tβ1
(b)
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· · ·

yq+6

q + 2

· · ·

Yp,q+6,r

... p+ 1

· · ·

r + 2 q + 3

Figure 22. yq+6 and Yp,q+6,r

· · ·

a

... p+ 1

· · ·

r + 2 q + 3

· · ·

b

... p+ 1

· · ·

r + 2 q + 3

Figure 23. a = tβ1
(a) and b in Σγp,q,r

· (t−1
αr+4

· t−1
β1
· tαr+4)(Yp,2,r) · · · (t−1

αr+4
· t−1
β1
· tαr+4)(Yp,q+6,r)

· (t−1
αr+4

· t−1
β1
· t−1
δp+2
· t−1
γ · tδp+2

)(γ)

= α1 · · ·αr+2 · tβ1
(a) · γr+1

r+4 · γ
−1
r+2 · tβ1

(b)

· (t−1
αr+4

· t−1
β1
· tαr+4

)(Yp,2,r) · · · (t−1
αr+4

· t−1
β1
· tαr+4

)(Yp,q+4,r)

· β2 · · ·βp+2 · Yp,q+5,r · γpr+5 · β−1

· (t−1
αr+4

· t−1
β1
· tαr+4

)(Yp,q+6,r) · (t−1
αr+4

· t−1
β1
· t−1
δp+2
· t−1
γ · tδp+2

)(γ).

One can easily check that

α1 · · ·αr+2 · tβ1
(a) · γr+1

r+4 = Zp,q,1 · · ·Zp,q,r+3,

β2 · · ·βp+2 · Yp,q+5,r · γpr+5 = X1,q,r . . . Xp+2,q,r

for some simple closed curves Xi,q,r and Zp,q,j with Xp+2,q,r = β and Zp,q,r+3 =
γr+2 due to the daisy relations. By performing daisy substitutions and can-
celling Xp+2,q,r with β−1 and Zp,q,r+3 with γ−1

r+2, we get a monodromy factor-
ization W ′Γp,q,r

whose length is b1(ΣΓp,q,r
).
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2.4. Relations for (h) family

· · ·

q + 3

−(q + 3)

−3 −2 −2

−2

−4
−4

· · ·
q

Figure 24. Resolution graph Γq and generic fiber ΣΓq for (h) family

Let Γq be a resolution graph of (h) family as in Figure 24. Then the generic
fiber for XΓq is Σq as in Figure 24 and the global monodromy of XΓq is given
by

β1β2β3α1α2 · · ·αq+2γq+2αq+3γ
q+1
q+3δ3γq+3αq+4αq+5γq+5.

We rearrange the word using Hurwitz moves as follows.

β1β2β3α1α2 · · ·αq+2γq+2αq+3γ
q+1
q+3δ3γq+3αq+4αq+5γq+5

= β1β2β3α1α2 · · ·αq+2γq+2γ
q+1
q+3αq+4(tαq+3

· t−1
αq+4

)(δ3)γq+3αq+3αq+5γq+5

= β2β3α1α2 · · ·αq+2γq+2(tβ1(γq+3))q+1tβ1(αq+4)β1(tαq+3 · t−1
αq+4

)(δ3)γq+3

· αq+3αq+5γq+5

= β2β3α1α2 · · ·αq+2γq+2(tβ1
(γq+3))q+1tβ1

(αq+4)β1γq+3(t−1
γq+3
· tαq+3

· t−1
αq+4

)(δ3)

· αq+3αq+5γq+5.

Let δ = (t−1
γq+3
· tαq+3 · t−1

αq+4
)(δ3).

β2β3α1α2 · · ·αq+2γq+2(tβ1(γq+3))q+1tβ1(αq+4)β1γq+3δαq+3αq+5γq+5

= β2β3α1α2 · · ·αq+2γq+2(tβ1
(γq+3))q+1tβ1

(αq+4)tβ1
(γq+3)β1δαq+3αq+5γq+5

= β2β3α1α2 · · ·αq+2γq+2(tβ1
(γq+3))q+1tβ1

(αq+4)tβ1
(γq+3)δt−1

δ (β1)αq+3αq+5γq+5

= β2β3α1α2 · · ·αq+2γq+2(tβ1
(γq+3))q+2tβ1

(αq+4)δt−1
δ (β1)αq+3αq+5γq+5.

Now we introduce cancelling pair γq+4 · γ−1
q+4 as follows:

β2β3α1α2 · · ·αq+2γq+2(tβ1
(γq+3))q+2tβ1

(αq+4)δ · γq+4 · γ−1
q+4t

−1
δ (β1)αq+3αq+5γq+5.

By taking a global conjugation of each monodromy with γq+3, the underlined
part can be seen an embedding of the linear plumbing Lq in Figure 26: The αi,
βj and γk is unchanged under conjugation. Note that tβ1

(γq+3) = t−1
γq+3

(β1)
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since β1 and γq+3 intersect geometrically once. And (tγq+3
· tβ1

)(αq+4) and
tγq+3

(δ) can be drawn as in Figure 25.

· · ·

q + 3

tγq+3 (δ) (tγq+3 · tβ1 )(αq+4)

· · ·

q + 3

Figure 25. tγq+3(δ) and (tγq+3 · tβ1)(αq+4) in Σγq

−(q + 3)

−5 −3 −2 −2· · ·

q + 1

· · ·
bq+2

q + 2

Figure 26. Linear plumbing Lq and the generic fiber ΣLq for XLq

Let Lq be a linear plumbing and ΣLq be a generic fiber for XLq as in Fig-
ure 26. Then the monodromy for XLq can be written as

a1a2 · · · aq+2bq+2aq+3aq+4aq+5bq+5a
q+2
q+6bq+6,

where ai is simple closed curve in ΣLq enclosing ith hole and bj is simple closed
curve in ΣLq enclosing from the first to ith holes. Then there is a planar
subsurface of ΣΓq

which is diffeomorphic to ΣLq
so that the image of each

curves are

ai → αi (i = 1, . . . , q + 2)

bq+2 → γq+2

aq+3 → tγq+3
(δ)

aq+4 → β3

aq+5 → β2

bq+5 → (tγq+3
· tβ1

)(αq+4)

aq+6 → β1

bq+6 → γq+4.
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The linear plumbing Lq can be rationally blowdown and the relation in the
mapping class group of ΣLq

for the rational blowdown was given by Endo-
Mark-Van Horn-Morris in [6].

a1a2 · · · aq+2bq+2aq+3aq+4aq+5bq+5a
q+2
q+6 = y1y2 · · · yq+6.

Let Yi a simple closed curve in ΣΓq
be the image of yi in ΣLq

which can be

drawn as in Figure 27 to Figure 31 and Xi be t−1
γq+3

(Yi).

y1

· · ·

q + 2

Y1

· · ·

q + 2

Figure 27. y1 and Y1

y2

· · ·

q + 2

Y2

· · ·

q + 2

yq+3

· · ·

q + 2

Yq+3

· · ·

q + 2

...

Figure 28. yi and Yi for (i = 2, . . . , q + 3)

Then we have

β2β3α1α2 · · ·αq+2γq+2(tβ1(γq+3))q+2tβ1(αq+4)δγq+4 · γ−1
q+4t

−1
δ (β1)αq+3αq+5γq+5

= tγ−1
q+3

(Y1)tγ−1
q+3

(Y2) · · · tγ−1
q+3

(Yq+6)γ−1
q+4t

−1
δ (β1)αq+3αq+5γq+5
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yq+4

· · ·

q + 2

Yq+4

· · ·

q + 2

Figure 29. yq+4 and Yq+4

yq+5

· · ·

q + 2

Yq+5

· · ·

q + 2

Figure 30. yq+5 and Yq+5

yq+6

· · ·

q + 2

Yq+6

· · ·

q + 2

Figure 31. yq+6 and Yq+6

= X1 · · ·Xq+6t
−1
δ (β1)αq+3αq+5γq+5γ

−1
q+4

= X1 · · ·Xq+4(tXq+5
· tXq+6

· t−1
δ )(β1)Xq+5Xq+6αq+3αq+5γq+5γ

−1
q+4

= X1 · · ·Xq+4(tXq+5
· tXq+6

· t−1
δ )(β1)αq+3αq+5γq+5γ

−1
q+4tα−1

q+3
(Xq+5)tα−1

q+3
(Xq+6).

One can easily see that (tXq+5 ·tXq+6 ·t−1
δ )(β1)αq+3αq+5γq+5 = Zq ·Wq ·γq+4 for

some simple closed curve Wq and Zq due to the lantern relation (See Figure 32).

By performing a lantern substitution and cancelling γq+4 with γ−1
q+4, we get a
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monodromy factorization W ′Γq
whose length is b1(ΣΓq

).

X1 · · ·Xq+4 · Zq ·Wq · tα−1
q+3

(Xq+5) · tα−1
q+3

(Xq+6)

(tXq+5
· tXq+6

· t−1
δ )(β1)

· · ·

q + 2

Figure 32. (tXq+5
· tXq+6

· t−1
δ )(β1)

2.5. Relations for (i) family

· · ·

q

−6 −2 −2 −2 −2

−(q + 3)
−3

· · ·
q

Figure 33. Resolution graph Γq and generic fiber Σγq for (i) family

Let Γq be a resolution graph of (i) family as in Figure 33. Then the generic
fiber for XΓq is Σq as in Figure 33 and the global monodromy of XΓq is given
by

β1β2α1α2α3α4α5γ5δ2γ
q+2
5 α6 · · ·αq+6γq+6.

We introduce a cancelling pair δ2 · δ−1
2 and rearrange the word using Hurwitz

moves and braid relations δ2 · α5 · δ2 = α5 · δ2 · α5 and δ2 · γ5 · δ2 = γ5 · δ2 · γ5.

β1β2 · δ−1
2 · δ2 · α1α2α3α4α5γ5δ2γ

q+2
5 α6 · · ·αq+6γq+6

= β1β2δ
−1
2 · α1α2α3α4 · δ2α5γ5δ2γ

q+2
5 α6 · · ·αq+6γq+6

= β1β2δ
−1
2 · α1α2α3α4 · δ2α5δ2γ5δ2γ

q+1
5 α6 · · ·αq+6γq+6

= β1β2δ
−1
2 · α1α2α3α4 · α5δ2α5γ5δ2γ

q+1
5 α6 · · ·αq+6γq+6

...
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= β1β2δ
−1
2 · α1α2α3α4 · αq+1

5 δ2α5γ5δ2γ5α6 · · ·αq+6γq+6

= β1β2δ
−1
2 · α1α2α3α4 · αq+2

5 · (t−1
α5

)(δ2) · γ2
5 · (t−1

γ5 )(δ2) · α6 · · ·αq+6γq+6

= β1β2δ
−1
2 α1α2α3α4α

q+2
5 γ2

5α6 · · ·αq+6γq+6 · (t−1
α6
· t−2
γ5 · t

−1
α5

)(δ2) · (t−1
α6
· t−1
γ5 )(δ2).

−2 · · · −2 −6 −2

−(q + 3)
q + 1

q

Figure 34. Linear plumbing Lq and the generic fiber ΣLq for XLq

The underlined part can be seen an embedding of the linear plumbing Lq in
Figure 34: Let Lq be a linear plumbing and ΣLq

be a generic fiber for XLq
as

in Figure 34. Then the monodromy for XLq
can be written as

a1a2a3a4a
q+2
5 b25a6 · · · aq+6bq+6,

where ai is simple closed curve in ΣLq
enclosing ith hole and bj is simple closed

curve in ΣLq
enclosing from the first to jth holes. Then there is obvious planar

subsurface of ΣΓq
which is diffeomorphic to ΣLq

so that the image of each
curves are

ai → αi (i = 1, . . . , q + 6)

bj → γj (j = 5, q + 6).

The linear plumbing Lq can be rationally blowdown and the relation in the
mapping class group of ΣLq

for the rational blowdown was given by Endo-
Mark-Van Horn-Morris in [6].

a1a2a3a4a
q+2
5 b25a6 · · · aq+6bq+6 = y1y2 · · · yq+6.

Let Yi a simple closed curve in ΣΓq
be the image of yi in ΣLq

which can be
drawn as in Figure 35 to Figure 38. Then we have

β1β2δ
−1
2 α1α2α3α4α

q+2
5 γ2

5α6 · · ·αq+6γq+6 · (t−1
α6
· t−2
γ5 · t

−1
α5

)(δ2) · (t−1
α6
· t−1
γ5 )(δ2)

= β1β2δ
−1
2 Y1 · · ·Yq+5 · Yq+6 · (t−1

α6
· t−2
γ5 · t

−1
α5

)(δ2) · (t−1
α6
· t−1
γ5 )(δ2)

= β1β2δ
−1
2 Y1 · · ·Yq+5 · Yq+6 · (t−1

α6
· t−1
γ5 )(δ2) · (t−1

α6
· tα5

)(δ2)

because

(t−1
α6
· t−2
γ5 · t

−1
α5

)(δ2) · (t−1
α6
· t−1
γ5 )(δ2) = α−1

6 γ−2
5 α−1

5 δ2α5γ5δ2γ5α6

= α−1
6 γ−2

5 α−1
5 δ2α5δ2γ5δ2α6

= α−1
6 γ−2

5 α−1
5 α5δ2α5γ5δ2α6

= α−1
6 γ−2

5 δ2γ5α5δ2α5α
−1
5 α6
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= α−1
6 γ−2

5 δ2γ5δ2α5δ2α
−1
5 α6

= α−1
6 γ−2

5 γ5δ2γ5α5δ2α
−1
5 α6

= α−1
6 γ−1

5 δ2γ5α6 · α−1
6 α5δ2α

−1
5 α6

= (t−1
α6
· t−1
γ5 )(δ2) · (t−1

α6
· tα5

)(δ2).

Y1

· · ·

q

Y2

· · ·

q

Figure 35. Y1 and Y2 in ΣΓq

Y3

· · ·

q

Y4

· · ·

q

Figure 36. Y3 and Y4 in ΣΓq

Y5

· · ·

q

Yq+4

· · ·

q

Figure 37. Yi in ΣΓq
(i = 5, . . . , q + 4)

Note that β1 ·β2 ·Yq+5 ·(t−1
α6
·tα5)(δ2) = δ2 ·Z ·W for some simple closed curves

W and Z in ΣΓq
due to the lantern relation. See Figure 39 for corresponding

curves in a planar surface. By performing a lantern substitution and cancelling
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Yq+5

· · ·

q

Yq+6

· · ·

q

Figure 38. Yq+5 and Yq+6 in ΣΓq

δ2 with δ−1
2 after rearranging the word, we get a monodromy factorization W ′Γq

whose length is b1(ΣΓq
).

β1β2δ
−1
2 Y1 · · ·Yq+5 · Yq+6 · (t−1

α6
· t−1
γ5 )(δ2) · (t−1

α6
· tα5

)(δ2)

= β1β2δ
−1
2 Y1 · · ·Yq+4 · tYq+5(Yq+6) · (tYq+5 · t−1

α6
· t−1
γ5 )(δ2) · Yq+5 · (t−1

α6
· tα5

)(δ2)

= (t−1
δ2
· tβ1)(Y1) · (t−1

δ2
· tβ1)(Y2) · · · (t−1

δ2
· tβ1)(Yq+4) · (t−1

δ2
· tβ1 · tYq+5)(Yq+6)

· (t−1
δ2
· tβ1
· tYq+5

· t−1
α6
· t−1
γ5 )(δ2) · δ−1

2 · β1 · β2 · Yq+5 · (t−1
α6
· tα5

)(δ2)

= (t−1
δ2
· tβ1

)(Y1) · (t−1
δ2
· tβ1

)(Y2) · · · (t−1
δ2
· tβ1

)(Yq+4) · (t−1
δ2
· tβ1
· tYq+5

)(Yq+6)

· (t−1
δ2
· tβ1
· tYq+5

· t−1
α6
· t−1
γ5 )(δ2) · Z ·W.

(t−1
α6
· tα5

)(δ2)

· · ·

q

Figure 39. Corresponding curves for the lantern relation
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