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RATIONAL HOMOLOGY DISK SMOOTHINGS AND
LEFSCHETZ FIBRATIONS

HaknHO CHOI

ABSTRACT. In this article, we generalize the results discussed in [6] by in-
troducing a genus to generic fibers of Lefschetz fibrations. That is, we give
families of relations in the mapping class groups of genus-1 surfaces with
boundaries that represent rational homology disk smoothings of weighted
homogeneous surface singularities whose resolution graphs are 3-legged
with a bad central vertex.

1. Introduction

Rational blowdown surgery, which was introduced by Fintushel-Stern [8] and
generalized by J. Park [15], is a surgery operation that replaces a linear plumb-
ing Cp 4 of 2-spheres with a rational homology ball B, , (i.e., Hi(Bp 4, Q) =
H.(B* Q)). As rational blowdown surgery reduces the second Betti number
and the Seiberg-Witten invariants of the surgered manifold are determined
by that of the original manifold under mild conditions, it is one of the most
powerful tools in constructing smooth 4-manifolds with small Euler character-
istic [9,16,19]. Further, it can be used to construct simply connected complex
surface of general type with p; = 0 and K? = 2,3, 4 because C,, 4 is the min-
imal resolution of cyclic quotient surfaces singularities A2 41, and B, , is
the rational homology disk smoothing (i.e., Milnor fiber with vanishing Milnor
number) of A, ,,_1 [13,17,18]. From these perspectives, researchers attempted
to identify other normal surface singularities admitting rational homology disk
smoothing (QHD for short). In particular, there is a complete classification of
resolution graphs admitting QHD smoothing for the case of weighted homoge-
neous surface singularities [2,20]. They are all 3-legged or 4-legged graphs. We
focus on 3-legged graphs in this article (refer to Figure 1 for the complete list,
and for an exhaustive list of 4-legged cases, refer to Figure 2 in [2]).
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FIGURE 1. 3-legged resolution graphs admitting QHD
smoothing (p,q,r > 0)

In this article, we aim to interpret QHD smoothings in terms of Lefschetz
fibrations. A QHD smoothing is a Stein filling of the link of a weighted homo-
geneous surface singularity with the Milnor fillable contact structure. As the
existence of positive allowable Lefschetz fibration (PALF for short) on a Stein
filling is well known in general [1,14], an explicit monodromy description of the
filling is of great interest. The simplest example of this is the famous lantern
relation abed = xyz in the mapping class group of 4-holed sphere, where each
letter stands for right-handed Dehn twists of curves, as depicted in Figure 2.
Here, a Lefschetz fibration X with monodromy abcd is diffeomorphic to the
minimal resolution of As; singularity whose link is diffeomorphic to a lens
space L(4,1) while a Lefschetz fibration Y with monodromy zyz is diffeomor-
phic to the QHD smoothing of the singularity [5]. Furthermore, the equality
in the relation implies that the boundaries of X and Y are diffeomorphic and
the induced contact structures on the boundaries are isotopic to each other,
which is isotopic to the Milnor fillable contact structure. Therefore, asking
whether other realtions that describe QHD smoothings exist is natural. In [6],
relations in the mapping class group of planar surfaces corresponding to QHD
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FIGURE 2. Lantern relation

smoothings of Ap2 ,,_1 and weighted homogeneous surface singularities with
resolution graphs belonging to (a), (b) and (c) families in Figure 1 were given
by Endo-Mark-Van Horn-Morris. In the resolution graphs depicted in Figure 1,
each vertex v corresponds to an irreducible component FE, of the exceptional
divisor F, which is topologically 2-sphere, and each edge corresponds to an
intersection between the irreducible components F,. We denote the number of
edges connected to a vertex v as the valence of v, and the self-intersection of E,
as the degree of v. If the absolute value of the degree of v is strictly less than
the valence of v, we call the vertex v a bad vertex. Note that central vertices in
(a), (b), and (c) families in Figure 1 are not bad vertices, while central vertices
in other families are bad. In this article, we construct genus-1 Lefschetz fibra-
tions on QHD smoothings containing bad central vertices in their resolution
graphs.

Theorem 1.1. For each resolution graph I in Figure 1 with bad central verter,
there is a relation Wr = WY between words of right-handed Dehn twists in
mapping class group of a genus-1 surface with boundaries such that Lefschetz
fibration X with monodromy Wr is diffeomorphic to the minimal resolution of
corresponding singularity Sr and Lefschetz fibration Yr with monodromy WY is
a rational homology ball.

To prove Theorem 1.1, we proceed as follows: For each resolution graph
I' in Figure 1 with a bad central vertex, we construct a genus-1 PALF Xrp
on the minimal resolution of the singularity St corresponding to I' and verify
whether the induced contact structure on the boundary is the Milnor fillable
contact structure by computing the first Chern class. Then, starting from the
global monodromy Wr of the X, we get another positive word W} = Wp
of right-handed Dehn twists by monodromy substitutions after introducing
appropriate canceling pairs so that PALF Yr with global monodromy WY is
rationally homology ball filling of the link of Sp.

Remark 1.2. From the Lefschetz fibration Yr we constructed, we obtain a
rational homology ball filling of the link of Sy. Hence, one may ask whether
the total space of Yr is symplectic deformation equivalent or diffeomorphic to
a QHD smoothing of St, which is given by complement of the compactifying
divisor Kr in a rational surface. By analyzing the method of constructing
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QHD smoothings, M. Bhupal and A. Stipsicz demonstrated that if I is one
of the resolution graphs in Figure 1 (a), (b), (c), (d), (e), (f) or (g), then
rational homology ball filling of the link of St with the Milnor fillable contact
structure is symplectically unique [3, Theorem 1.1]. We expect this result to be
valid for the (h), (i) and (j) families. However, the uniqueness of the symplectic
deformation or diffeomorphism type of rational homology ball filling is unknown
for those families.

Acknowledgements. The author thanks Kyungbae Park, Jongil Park and Ki-
Heon Yun for their interests and valuable comments. The author is supported
by a KIAS Individual Grant (MG071002) at Korea Institute for Advanced
Study.

2. Monodromy relations

As the first step of the proof of Theorem 1.1, we construct genus-1 Lefschetz
fibrations on the minimal resolutions. If there is no bad vertex in the resolu-
tion graph T, there is well-known genus-0 PALF of Gay-Mark on the minimal
resolution [10] (See also [7]): We consider the 2-sphere 3; with b; holes for each
vertex v; with degree —b;. Then, the generic fiber ¥ is obtained by gluing X;
along their boundaries according to I', and the global monodromy is given by
the product of right-handed Dehn twists on curves parallel to the boundary of
each ;. We end up with only one right-handed Dehn twist on the connecting
neck. For the resolution graphs in Figure 1 with bad central vertex, we con-
struct PALFs on the minimal resolutions by introducing a genus on the generic
fibers, as in [4].

T

—C

—aq —Q; -2 71)1 7bj

FIGURE 3. 3-legged plumbing graph I' with bad central vertex

First, we construct genus-0 Lefschetz fibrations on horizontal and vertical
part of a plumbing graph I' given in Figure 3 as illustrated in Figure 4 and
Figure 5: Let 31 and X5 be the generic fibers for horizontal and vertical parts,
respectively. We denote a simple closed curve in ¥; enclosing i** hole by a;
and a simple closed curve in ¥; enclosing all holes from the first to i*" hole
by ;. Further, we denote a simple closed curve in ¥y enclosing i*" hole by j3;
and a simple closed curve in ¥y enclosing all holes from the first to it* hole
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FIGURE 5. Global monodromy: 1 -+ e, —10¢, -1 We

by d;. The global monodromy of horizontal part can be written as W,y W,
where W, is a word of right-handed Dehn twists along curves from degree —a,,
vertices, W} is a word of right-handed Dehn twists along curves from degree
—byy, vertices, and N = (a1 +---+a;) —2i+ 1. Similarly, the global monodromy
corresponding to the vertical part can be written as 51 - - - B¢y —10¢, —1 We, where
W, is a word of right-handed Dehn twists along curves from degree —c; vertices
with 1 =2,... k.

Now, we consider a genus-1 surface X obtained from X1 by attaching by (X2)
1-handles as in Figure 6. Then, we can naturally consider simple closed curves
in ¥; as simple closed curves in Xp.

Proposition 2.1. Let Xr be a positive allowable Lefschetz fibration with
generic fiber Xr, and global monodromy 1 - -+ Be; —1Wa YN0y —1 Weyn Wy Then
total space of Xr is diffeomorphic to the plumbing of 2-spheres according to I'.
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N=(a1+-4+a;))—2i+1 (b1+---+bj)—2j

FIGURE 6. Global monodromy: B - e, —1Waynde, —1 Weyn Wi

Furthermore, the first Chern class of Xr satisfies the adjunction equality for
each vertex in I'.

Proof. We first verify that a genus-0 PALF X} of Gay-Mark on a linear plumb-
ing L (see Figure 7) is actually diffeomorphic to the plumbing of spheres. From
the Lefschetz fibration structure of X, we obtain a Kirby diagram as in Fig-
ure 7: As the generic fiber of W is N = (a1 +- - -+a;)—2i+1 holed disk, we have
one 0-handle, N 1-handles and a 2-handle for each vanishing cycle as in Fig-
ure 7. Note that all the framings of 2-handles are —1 with respect to the black-
board framing. First, we slide a 2-handle corresponding to vy over 2-handles
corresponding to a,, withn = N—a;+3,..., N, and yy_4,+2 to unlink from the
1-handles. After cancelling 1-handles with a, (n = N—a;+3, ..., N) 2-handles,
we obtain the last diagram in Figure 7. A 2-handle represented by unknot in
the last diagram in Figure 7 corresponds to degree —a; vertex v; in L. Thus, the
homology class of v; can be represented by Yy —YN—a;42 — ON—g; 43— —QN.
We also verify that the first Chern class ¢q (X 1,) satisfies the adjunction equality
on v;: The first Chern class ¢1(X) is represented by a co-cycle whose value
on the 2-handle corresponding to a vanishing cycle is the rotation number of
the vanishing cycle [12]. And if we fix a trivialization of the tangent bundle of
fiber as a natural extension of a trivialization of the tangent bundle of R?, the
rotation numbers of all vanishing cycles of X are 1. Then a simple computa-
tion shows that the adjunction equality is satisfied on v;. The aforementioned
process can be repeated until a Kirby diagram of the plumbing of 2-spheres
according to L is obtained.

Subsequently, we verify that the total space of Xt is diffeomorphic to the
plumbing of 2-spheres according to I'. From the Lefschetz fibration structure
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FIGURE 7. Linear plumbing of L and part of Kirby diagram of W

of X, we get a Kirby diagram of Xt as in Figure 8. The white and gray 1-
handles correspond to the horizontal and vertical parts of I, respectively, and
all the framings of 2-handles are —1 with respect to the blackboard framing.
As the Kirby diagrams for the horizontal and vertical parts are embedded
in the diagram for X, the plumbing of unknots is obtained with respect to
the horizontal and vertical parts by sliding and canceling handles as described
previously. The linking of horizontal and vertical parts is derived from linkings
between 2-handles corresponding to 31, é.,—1 and two vyn. The homology class
of each vertex v is represented by same vanishing cycles derived from linear
plumbings. Thus, the first Chern class of Xr satisfies adjunction equality on
. (]

If T is one of the resolution graphs with bad central vertices in Figure 1,
then the PALF Xt induces the Milnor fillable contact structure on the bound-
ary: Let Y be the 3-manifold diffeomorphic to the boundary of Xr. Then
Y is a small Seifert 3-manifold Y (—2; (a1, 51), (a2, B2), (a3, 53)). If Y is an L-
space, there is a classification of tight contact structures on Y given by Ghiggini
(Theorem 1.3 in [11]): A tight contact structure £ of L is determined by Spin®
structure t¢ induced by £ and filled by the Stein manifolds described via Legen-
drian surgery on all possible Legendrian realizations of the link corresponding
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F1GURE 8. Part of Kirby diagram of Xrp

to I'. In particular, the Milnor fillable contact structure is filled by the Stein
manifold whose first Chern class satisfies the adjunction equality on each ver-
tex in I'. On the other hand, the singularity corresponding to I' is a rational
singularity, because it admits QHD smoothing. Therefore, the link of the sin-
gularity, which is diffeomorphic to the boundary of Xr, is L-space. Hence,
by the theorem of Ghiggini, the PALF X we constructed induces the Milnor
fillable contact structure on the boundary of Xr.

Remark 2.2. Using a technique similar to that described in Proposition 2.1, we
can construct a genus-1 PALF structure on a 4-legged resolution graph with a
central —3 vertex whose first Chern class satisfies the adjunction equality on
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each vertex. But it is unknown whether the induced contact structure of the
PALF is the Milnor fillable due to the lack of a classification of tight contact
structures.

We now give an explicit relation Wr = W/ between two words of right-
handed Dehn twists on simple closed curves in genus-1 surface X where Wt is
the global monodromy of Xt while the PALF Yr with the global monodromy
W/ is a rational homology ball filling. Because of the homology condition on
Yr, the length of W[ must be equal to b1 (2r). Conversely, if the length of W}
is equal to b1 (Xr), then Yr is a rational homology ball since the boundary of
Xr is rational homology 3-sphere. We denote the right-handed Dehn twist on
a curve a by a and also by %, and use functional notation for the products of
Dehn twists.

2.1. Relations for (d) and (f) family

(o)

—(r+4)
_2..._.2_.3_.2..._.2 . : }r+2
-2 -2 Y~ ~~—~—"—(q¢+5) )
q T O
_3 Eg
.JQQ...;Q_.
-2 -2 T—(q+6) CC D OO
W_/
q+3

FIGURE 9. Resolution graph I'y, and generic fiber ¥r_ for
(d) and (f) family

Let I'y,(with r > 0) be a resolution graph of (d) family and I'; _; be a
resolution graph of (f) family as in Figure 9. Then the generic fiber for Xr_
is ¥r, . as in Figure 9 and the global monodromy of Xr_ is given by

2 q+1 r+1
Bi- Bryzaidry3a] oYy Q3 QgysYets-

We introduce a cancelling pair 6, +15 -0r+3 and rearrange the word using Hurwitz
moves.

2 q+1 r+1
Bi- Bresaidriza] oYy Q3 QgysYgts

+ 1

— -1 2 q+1 +
=01 Brys- 5r+3 O3 a70p30] oy Qg Qq+5%q+5

_ v+l s—1 . q+3
=P1Bres¥s’ 0,45 0 Q203 Qgy5Vg45

(Tt ) (6r43) - (t Tt ) (Br4s).
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Let ¢, = t;zl (6r+3). Then ¢, and oy intersect geometrically once. Because of
the braid relation ¢, - a; - ¢, = ay - ¢, - @1, we have

(t 9t ) (Sra) - (859 - 150) (Gr48)

_ —(a+3) 2 (g+1)
= cCp O Cp Oy
—(g+3
:al(q )~c,.-a1-c,.-a1~c,.-of{
_ —(a+2) 2 q
= cCp Oy Cp O
:an-CT-oz?cT
:afz-c,«-a?cr-ayafl
_ -2 -1
=] C GOy Cp O
-1 -1

=07 GOy -QycCr Q]
= (t;ll)(cT) “toy (cr)-
On the other hand, we have a daisy relation of the form
3
0/1H Q2 Qg45Yg+5 = Y1Y2 " Yg+5

with y; = 79 as in Figure 10 to Figure 11. Hence after a daisy substitution and

q+3 q+3

FIGURE 10. y; and y»

Hurwitz moves, we have
Brow Brasys ™0y yaye  ygrs - (E ) (er) - tay (o)
=B Brrans ™ sy ans - (82 (6r) - taa (cr)
= Yo Youse (ta, 85, ta))(er) - B Bras - tay(er) - 7577 67y,

where Y; , = (¢, - tgrlJrg)(yi). Again, we have a daisy relation of the form

2
61"'/87’-‘,-3’15041(67‘)'754_ :21'22"'ZT+3'ZT‘+4
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FIGURE 11. y; fori=3,...,q+5

with z.44 = d,13. See Figure 12 for corresponding curves in planar surface.
By performing a daisy substitution and cancelling z,44 with 6, +13, we get a
monodromy factorization Wy, whose length is b1(Xr, ).

Yo, - ..Yq+5’r . (tﬁl tgrlw .t(zll)(cr) 21 Zpgs

(O o .- O@>

r+4

FiGURE 12. Corresponding curves for a daisy relation

2.2. Relations for (j) family

Let T'y be a resolution graph of (j) family as in Figure 13. Then the generic
fiber for Xt is ¥, as in Figure 13 and the global monodromy of Xr, is given
by

BraZBIT By -+ Byradysaarasazasass.
We introduce a cancelling pair 37! -  and rearrange the word using Hurwitz
moves where (3 is a simple closed curve in 3, as in Figure 13.

1 2 pgt1
BB B-aiBTT Ba - Bars3dgrsanaaazasasys
—1 2 pg+1
=B Byps - B B1BAE BT Gy scnanazasasys

= Ba Byrs - B BiBatdgyzonanasasasys - ((t5) o) (B1))H.
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oy (biooo)

FIGURE 13. Resolution graph I'; and generic fiber X, for (j) family

—
\ |
210 - 0)

There is an obvious subsurface of ¥, which is diffeomorphic to ¥y _; of Figure 9
so that image of each curve of ¥y _; in 3, is as follows:

B — b
2 — B

(52 — (5q+3
o, Q4

By performing a monodromy substitution corresponds to I'g _; of (f) family,
we have

B+ Bags - B BLBaTdqpsarasasosasys - ((t5) - 1)) (B1))
=By .5q+3 . 571 Vg2 Y5 (tﬂl 't6_q1+3 ’t;})(cq) ©Zq1%¢,2 Bat!
=Y52 - Yy5 B2 Bgts

_ _ _ — 1 — 1
(tg, 15k tab)(eg) - BT L (51 (500) - (85T ) (2g.2)-

Here Y, ; and z,; is image of ¥; _1 and z; of ¥y _; in 3, respectively, ¢, =
tod(0g+3) and B = (t;! - t31)(B1). We have a daisy relation of the form

-1 41 1
52 . ..ﬁquS . (tﬂl 't5q+3 'tal )(Cq) . B(H- =21 Tgts
with 2443 = . See Figure 14 for corresponding curves in planar surface.

By performing a daisy substitution and cancelling z,3 with 371, we get a
monodromy factorization W, - whose length is b1(Xr,).

— 1 — 1
Yoo Yos a1 gz (5 7) (z00) - (157) (2.2).

2.3. Relations for (e) and (g) family

Let I', 4,—1 be a resolution graph of (e) family and I', 4 »(with » > 0) be a
resolution graph of (g) family as in Figure 15. Then the generic fiber for Xt

is ¥p ¢~ as in Figure 15 and the global monodromy of Xr, ,  is given by

q+1 r+1 p+1
Br- Bpyoar - 04r+3%+35p+2%+3 Qr 444 4 Xr45Yr 45 ¥r+6 " Qr4q+7Vr4q+7-
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FI1GURE 14. Corresponding curves for a daisy relation
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FIGURE 15. Resolution graph I', 4, and generic fiber ¥p
for (e) and (g) family

p,q,T

We introduce cancelling pairs 3713 , .- _:2 Y42 and 7. _:3 -Yr+3 and rearrange
the word using Hurwitz moves where 3 is a simple closed curve in 3, 4, as in
Figure 15.

B+ Bpyaar - - ar+3'7r+36p+2’73131;ar+4’7:jrriar+57£151ar+6 C Qg T Vg7
=B Bpra - BT BranQuir Yl Y2 Qs Yogs Vs

: %+35p+2'yfiéar+4wlﬁOzr+5’yfiéar+6 C Qg T Yr g+ 7
:ﬂl"'ﬂp+2',371'041"'%«4-2"7;4}2"7;&3

: ﬁ%+2ar+373+35p+2731§Oér+47:iiar+57fislar+6 C Qg T Vg7

_ -1 -1 -1 r+1 p
=01 Bpr2- BT 1 Q2 Voo Vras  Vedd  Vras
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: ﬁ7r+2ar+3'73+36p+27(r1¢§ar+4ar+57r+5ar+6 T Qg+ T Yr4g 4T
=B Bpra- Bl a1 g '%112 'V:ﬁ Yo - (s, (yr43)) "
- Byrsats, (@ra) (ts, (1r43)) 20pra(ts, (1r43)) T Bransa
CQr5Vr45Qr4+6 T Qrdq+ 7 Vr+q+7
= B2 Bpt2 'ﬁ_l cQp o Qpyo '%;12 '%Tﬁ '%I«)+5 : (tﬂl (’Yr+3))_1
- Brrats (arr3) (bs, (Vr43)) 2pra(ts, (1r3)) T arpa(ty ), (B1)
C O 5Yr 45046 " Qg+ TV r g+ 7+
Let v = tg, (¥r+3). Then v and §,,2 intersect geometrically. Because of the
braid relation 7 - dp42 - ¥ = dpy2 - ¥ - Op42, We have
’)’25p+27q+
=7 0py2 7 Opy2-?
=7 6;27+2 Y Opta vt

+
5Z+2 Y Opta

78T (15 ()
= (tv(5p+z))‘”2 -t ) ()
= (ty(0p2)) - (15, 857 15,02)(0) (0 (85,,)(7) = ty(8p+2)).
Back to the global monodromy, we have
Bow Bpra B an g s vida s (tsy (rg3)) !
- Brrtats, (ar+3)(tv(5p+2))q+3(t5,,+2 s, ) (Varalty), ) (Br)
C O 5Yr 45046 0 Qg T Yr4-q+7
= B2 Bpra B ooy a s (B ()T
'/B'Yr+2t,81(ar+3)(t7(5p+2)) Bapaltyl, 5k, 1 e, () - (ta k) (Br)
C Qg 5Yr 450046 0 Olp g7 Vr4-q+7
= B2 Bpt2 'ﬂ71 : CQpy2 - ’Yr+2 %Tj-_i ’Yr+5 (tﬁl (’Yr+3))71
“Yrt2 g, (Qr43) '»3 : (tv(5p+2))q+ O 4l 1 5Yr 45046 * ** Qg g TV rd-q+7
(ot té,,ﬂ At ts,0)(7) - (2 ) (B

The underlined part can be seen an embedding of the linear plumbing L, in
Figure 17: Let L, be a linear plumbing and ¥ be a generic fiber for X as
in Figure 17. Then the monodromy for X can be written as

q+3
aq a2a3a4b4a5 R aq+6bq+6,
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o)

p+1

FIGURE 16. ty(dp42) in 3

Tp,q,r

-2 -2 =5

T <o 000 O o>

N
q+2

FIGURE 17. Linear plumbing L, and the generic fiber ¥, for X,

where a; is simple closed curve in 3y, enclosing ith hole and b; is simple closed
curve in ¥ enclosing from the first to ith holes. Then there is a planar
subsurface of Y which is diffeomorphic to ¥z, so that the image of each

p,q,T

curves are
ay — t,y(éerg)
as — B
a; — Qg (7’237aq+6)
bs = Yrgs

bgt6 = Yrtq+7-

The linear plumbing L, can be rationally blowdown and the relation in the
mapping class group of ¥y for the rational blowdown was given by Endo-
Mark-Van Horn-Morris in [6].

q+3 —
ai ' “asazasbsas - - - agrebgre = Y1Y2 - Yg+6-

Let Y} i a simple closed curve in ¥, = be the image of y; which can be
drawn as in Figure 18 to Figure 22. Then we have

Bow+ Bpsa- B an g "Yr_+12 "Y:ﬁ R (7 (Yr43)) ™"

iz -ty (rgs) - Bty (Opr2)) P arpatr s Yrisri6 - Qriqit Vet
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@259 0 0) (G sthivo o)

Q+2 r+2 Q+3

FIGURE 18. y; and Y, 1, = (¢3! tﬁ “taris) Ypir)

Qrtdq

(o(oooo o))(o od

Q+ r+2

FIGURE 19. y2 and Y, 2 »

(taria s t;l-tap+2><v> (ta) ) (BY)
= Ba-Bpra- B TR R (A %+a (tg, (Vr43)) "
Argaz g (Qri3) - Yp,l,,« - Ypgrer - (to), -ty %H A ts,0) () () (BY)
:32...3p+2.5—1.a1...ar+2.7;+12.7:ﬁ.%{7+5
(e () T ez -ty () - (Ba) ) (B1) - (850, 85, - tanya) Yo r)
(ot 15t Vo) - (01, 15 tar ) (YVogre.r)
ottt s, ) ()
Note that
Yrv2 gy (rya) - (tar, ) (B1) - (tatyy 15 - tayes) YVpr)
= tg, (Vr+2) - tg, (r43) - L, (Qrta) - g, (Vrta)
= tg, (yr+3) - tp,(a) - 3, (b),

where a and b are simple closed curves as in Figure 23 due to the lantern rela-
tion. After a lantern substitution and cancelling (g, (t+,,,)) " with ¢g, (t4,,,),



RATIONAL HOMOLOGY DISK SMOOTHINGS & LEFSCHETZ FIBRATIONS

o)

q+2

Yq+4 }/p,q+4,7’

(©60000)(lo--od

w_/ R/_/
q+2 r+2 q+2

FIGURE 20. y; and Y, , for (i=3,...,¢+4)

O
}p—l—l
O
Yq+5 Yp,q+5,r %
(“O o) @ b o)+ 0)
—
Q+2 r+2 q+3

FIGURE 21. yg45 and Y}, g5, = (toz 44 tﬁ 1 ,+4)(Yp7q+5,7‘>

we have
Bo o Bpra - B an g vl v s
(g, (Yrg3)) T a2 g () - (051 ) (B1) - (t0) L, 5 - taga)(
(t;,H t[?ll 'tar,~+4)(yp,2,r)' (t; 44 tﬁl 'ta7-+4)(yp,q+6’r)
ara oty t0,02)(0)

— -1 1
= B2 Bprz BT ar a1 d s e (a) - te, (D)

Y,

243

,1,7')
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Yp,quG,T

FIGURE 22. yg46 and Yy g16,r

O
O

p+1 : p+1

Co oacg o)(f D)O -+ O

r+2 q+ 42 q+3

FIGURE 23. a =tg,(a) and bin X,
ety ) tans) Vo) - (51, 5] tawy) (Vo ver)
Sttt s, s, ()

= a1 opgo - tg (@) L v e (D)
(taris o tari) Yp2s) o (ta) 15 ta,y) (Ypgrar)
- P2 ”'Bp+2'y;g+&r'7£+5'6_
(tars o tarrd) Yogror) - (ta), 15 15, 857 t5,.) ()
One can easily check that
a1 aepg -t (a) - ’7:-:-_4} = Zpq1 Lpqr+s
Ba- Bpaz Yogrsr - Vras = Xigr - Xprogr

for some simple closed curves X; ,, and Z, 4 j with X},10 4, = Band Z,, 4,13 =
Yr42 due to the daisy relations. By performing daisy substitutions and can-
celling X, 12,4, with 371 and Z, ,,+3 with 7;_&2, we get a monodromy factor-
ization Wy, whose length is b1(Xr, , ).
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2.4. Relations for (h) family

N
O
0

R <o O - <@

-2

—(g+3) T

o)

FIGURE 24. Resolution graph I'; and generic fiber ¥, for (h) family

%/—/
q+3

Let T'y be a resolution graph of (h) family as in Figure 24. Then the generic
fiber for Xt is ¥, as in Figure 24 and the global monodromy of X, is given
by

p1B2fBzaraz - - aq+2’)’q+2%+37§i§53’)’q+30¢q+40¢q+5’7q+5'
We rearrange the word using Hurwitz moves as follows.

B1B2B3010 * ++ Ol 2Yq 2004371 303Yq 430 +40+57g+5
= P1P2fsonag - aq+27q+2731§aq+4(taq+s : t;ql+4)(53)7q+30‘q+30‘q+57q+5
= Bofsaras - - agravgra(tp, (Ya3)) i, (0rgra) Br(ta, s - t;:+4)(53)7q+3

" Qg+30q4+5Yq+5
= PaBaonaz - agravgralte, (4a+a) ™ o, (0gra) Brrgsa(ty ) - ta s - ta,),,)(03)

- Qg +3Qq+57q+5-

Let 6 = (t51 ) ~tay,s - tar,,)(03).

BaBzaias - - agravgra(ts, (Yar3) " s, (Qgra) Brygradaytaarsvats
= Bafsaran - - agyavara(ts, (vgr3) " s, (gra)ts, (Yar3)B100q 304157045
= Bofscraz - agravgra(ts (Vo)) s, (agra)ts, (v4+3)085  (B1)agraq+sVa+s
= Bofzaran - agravgra(ts, (74+3)) 7 s, (aga)0t5  (Br)ag 30457045

Now we introduce cancelling pair yg4+4 - 7, +14 as follows:

BaBsaias - - agyaYara(ts, (Vars)) *ts, (g1a)d - Yara - Voratls ' (B1) g0 5745

By taking a global conjugation of each monodromy with ~,43, the underlined
part can be seen an embedding of the linear plumbing L, in Figure 26: The «;,
B7 and -y is unchanged under conjugation. Note that tg, (V4+3) = t;q{rs (61)
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since 1 and 7443 intersect geometrically once. And (i, - tg,)(aqys) and
ty,.5(0) can be drawn as in Figure 25.

) N
(O) O
trysa ) || O (trgrs o) (agra) | O
Coo---@%)o) %)O)
e — e —
q+3 q+3

FIGURE 25. 1,_,(3) and (£, - tg,) (@gsa) in 55,

. o oL _2< O O OO0

—q¥r3) = e

q+

FIGURE 26. Linear plumbing L, and the generic fiber ¥ L, for Xp,

Let L, be a linear plumbing and ¥ be a generic fiber for X as in Fig-
ure 26. Then the monodromy for X can be written as

2
@102 - Ag12bg+20q+30q+40q+5Dg+500 1 0q +6,
where a; is simple closed curve in ¥ enclosing ith hole and b; is simple closed
curve in ¥ enclosing from the first to ith holes. Then there is a planar
subsurface of ¥r_  which is diffeomorphic to ¥,  so that the image of each
curves are

a; = (i=1,...,9+2)
botz = Ya+2
agy3  —  ty,,5(0)
ag+a — B3
ag45 — [
bgrs — (t’Yq+3 : tﬁ1)(aq+4)
agr6 — B
bgt6 = Ygta-
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The linear plumbing L, can be rationally blowdown and the relation in the
mapping class group of ¥y for the rational blowdown was given by Endo-
Mark-Van Horn-Morris in [6].

q+2 _
a1az - - - Ag12bg+20q+3091+40q150g 450416 = Y1Y2 -+ Yg+6-

Let Y; a simple closed curve in Y, be the image of y; in ¥, which can be
drawn as in Figure 27 to Figure 31 and X; be t;1 (V;).

Yq+3

q+2 q+2

FIGURE 27. y; and Y

(c-GE550) (s-Eio)

q+2 q+2

O
©)

Fereme) @ ohie)

-0 O
~— Yq+3 Yg+3
q+2 q+2

FIGURE 28. y; and Y; for (i =2,...,¢+3)

Then we have
BaBzaiag - - agravgr2(ts, ('7q+3))q+2t51 (O‘q+4)57q+4 : ’7q_+14t§_1(51)0‘q+30‘q+5'7q+5

= t’Yq_+13 (Yl)t,yq—+13 (Yz) e t,yq—+13 (Yq+6)’}/;:4tg1 (Bl)aq+3aq+5’yq+5




248 H. CHOI

((o /3\0 o)o) @% o)

S—— Vot Vora
q+2 q+2

FIGURE 29. 9444 and Y14

O
O
((O"'OO/O\O)O) (O"'OC% O)
S~ Yq+5 " Yo+s
q+2 q+2

FIGURE 30. y445 and Y 45

(o o) (om O cg o)

[ Yq+6 — Yy+6
q+2 q+2

FIGURE 31. yg46 and Y46

= X1 Xgrety ' (B1) 1300 45Y9+5Vq 14

= X1 Xgpaltx, s tx,46 'tgl)(51)Xq+5Xq+6aq+304q+57q+57;+14

=X Xq+4(th+5 O tgl)(ﬁl)aq+3aq+57q+57¢;}4ta;3 (Xq+5)taq—+13 (Xg+6)-
One can easily see that (tx,,, tx, . t5 ) (B1)0qr30g+5Yq+5 = Zq Wy Ygsa for

some simple closed curve W, and Z, due to the lantern relation (See Figure 32).
By performing a lantern substitution and cancelling 444 with Ve +14, we get a
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monodromy factorization WY, -whose length is b1(Xr, ).

Xy Xgra Zg- Wo -t (Xars) - to1, (Xato)

O

Cﬁ}dﬁmg

q+

FIGURE 32. (tx, ., “tx,. t; )(B1)

2.5. Relations for (i) family

-3

O
EL;—.’.qlE_—(z“) Coooo dﬁb O - o>

-6 -2 -2 -2 —

q

FIGURE 33. Resolution graph I'; and generic fiber ¥, for (i) family

Let T'; be a resolution graph of (i) family as in Figure 33. Then the generic
fiber for X, is ¥, as in Figure 33 and the global monodromy of X, is given
by

ﬂ1ﬂ2a1a2a3a4a57552'y§+2a6 © Qg 6Yq+6-
We introduce a cancelling pair d, - 85 ' and rearrange the word using Hurwitz
moves and braid relations ds - a5 - 0o = a5 - 92 - a5 and g - V5 - G2 = Y5 - I2 - V5.

—1 q+2
B1B2 - 65 " - 02 - cyapaizassYsdoYs O ¢ - Olg+6Yg+6
_ -1 q+2
= P1B205 " - a1aqz0ry - 62057Y502Ys | Q6+ Qlg46Vg+6
— —1 g+1
= P1B205 " - araoazay - 620502750275 | Q6 - - Qlgt6Yg+6

—1 —+1
= 18205 " - arazaizay - 5020550278 QG - Qg 6Yg+6
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_ 1
= B1fB205 1 - aranazay - ol Sya5v500v506 - Qg r6Ygr6

_ 9 _ _
= B1B26; " - anepasan - of T (151)(62) - 12 - (85,.))(62) - a6 - - agr67g 6

= B1B205 onanasasad P 2ag - agreTars - (tag 152 1o )(82) - (tal - t51)(62).

2. 252 Cooooooo--- o)
— —(q+3)

q
FIGURE 34. Linear plumbing L, and the generic fiber ¥, for Xy,

The underlined part can be seen an embedding of the linear plumbing L, in

Figure 34: Let L, be a linear plumbing and ¥ be a generic fiber for X as

in Figure 34. Then the monodromy for X can be written as
a1a2a3a4ag+2b§a6 tee aq+6bq+6,

where a; is simple closed curve in ¥ enclosing ith hole and b; is simple closed
curve in ¥y enclosing from the first to jth holes. Then there is obvious planar
subsurface of ¥p_  which is diffeomorphic to ¥  so that the image of each
curves are

a; = (i=1,...,q+6)
bj — v (=5q+6).

The linear plumbing L, can be rationally blowdown and the relation in the
mapping class group of ¥ for the rational blowdown was given by Endo-
Mark-Van Horn-Morris in [6].

q+2;2 _
102030405 bsae - - 'aq+6bq+6 = Yi1Y2 - Yq+6-

Let Y; a simple closed curve in ¥p, be the image of y; in ¥, which can be
drawn as in Figure 35 to Figure 38. Then we have

B1B20;y  onasasouald 2 ag - agreVars - (tay 150 - tal)(02) - (tad - £5.1)(62)
= 51625515/1 Y5 Yoie (t;61 -t;f .t;;)((;?) . (t;61 't;sl)(52)
= BP0y V1 Yous - Yoro - (tay - 15.)(02) - (t5] tas)(02)
because
(g 157 1o )(82) - (o) - 13.1)(62)

1 -2 -1
O Vg 0y 0205775027506

12 1
= g V5 Q5 020502750206
12 -1
=g V5 5 a5daasysda0p

12 1
Qg Y5 “02vsad2050 Qg
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= ag 75 262502050205 L ag

= ag "5 P05 asdaas tag

= 0‘8175715275046 ‘ 048104552045:10%
(tae 152)(82) - (£ - tas)(82)-

O

O
Y; Ys
COOOOC bO"'O) COOOOC bO"'O)
W_/
q

P
q

FIGURE 35. Y1 and Y3 in X,

O O
ceiloms) @Eeainio o)

~—
q

FIGURE 36. Y3 and Y in X,

e e
YS Yq+4
Coooo )O~~\OD Coooo mmo)
S S
q q

FIGURE 37. Y; in Xp, (i=05,...,q+4)

Note that 8182 Yyts5- (75;61 ‘tas ) (d2) = 02+ Z-W for some simple closed curves
W and Z in 3r, due to the lantern relation. See Figure 39 for corresponding
curves in a planar surface. By performing a lantern substitution and cancelling
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O

(o)
Yors Yoo
Coooo &@ O o)@oooo d % DO OD

P —
q

FIGURE 38. Y 45 and Y46 in X,

8o with & * after rearranging the word, we get a monodromy factorization Wr,
whose length is by (Xr, ).

B1B20y Y1+ Yaus - Yore - (tay - 15.1)(82) - (15, - tas)(62)

= B1B203 Y1+ Yora -ty (Yare) - (bypys - tag - £5.)(02) - Yous - (to) - tas)(32)

= (5, 5, ) (Y1) - (t5," g, ) (Ya) - (15! - tp) (Yaua) - (15" - L5, - tvays) (Yare)
Sty ts by tar 1) (02) <5 B By Yous - (tay - tasy)(02)

= (t5, - tp,) (V1) - (5, -5, (Ya) -~ (15} - t5,) (Vo) - (15, - tg, - v, 5) (Yare)
St gy tygs tae t5.0)(02) - Z - WL

(f;ol : tas ) (62)

COOOO d

FiGUre 39. Corresponding curves for the lantern relation
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