DOI QR코드

DOI QR Code

MINIMAL SURFACE SYSTEM IN EUCLIDEAN FOUR-SPACE

  • Hojoo Lee (Department of Mathematics and Institute of Pure and Applied Mathematics Jeonbuk National University)
  • Received : 2022.03.02
  • Accepted : 2022.10.27
  • Published : 2023.01.01

Abstract

We construct generalized Cauchy-Riemann equations of the first order for a pair of two ℝ-valued functions to deform a minimal graph in ℝ3 to the one parameter family of the two dimensional minimal graphs in ℝ4. We construct the two parameter family of minimal graphs in ℝ4, which include catenoids, helicoids, planes in ℝ3, and complex logarithmic graphs in ℂ2. We present higher codimensional generalizations of Scherk's periodic minimal surfaces.

Keywords

References

  1. S. T. Becker-Kahn, Transverse singularities of minimal two-valued graphs in arbitrary codimension, J. Differential Geom. 107 (2017), no. 2, 241-325. https://doi.org/10.4310/jdg/1506650421
  2. R. Beyerstedt, Removable singularities of solutions to elliptic Monge-Ampere equations, Math. Z. 208 (1991), no. 3, 363-373. https://doi.org/10.1007/BF02571533
  3. E. Calabi, Examples of Bernstein problems for some nonlinear equations, in Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), 223-230, Amer. Math. Soc., Providence, RI, 1970.
  4. E. Catalan, Memoire sur les surfaces dont les rayons de courbure, en chaque point, sontegaux et de signer contraires, C. R. Acad. Sci. Paris 41 (1855), 1019-1023. Available at http://gallica.bnf.fr/ark:/12148/bpt6k2998h?rk=21459;2
  5. C. C. Chen and C. C. Goes, Degenerate minimal surfaces in R4, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 1-16. https://doi.org/10.1007/BF02584741
  6. S. Chern and R. Osserman, Complete minimal surfaces in euclidean n-space, J. Analyse Math. 19 (1967), 15-34. https://doi.org/10.1007/BF02788707
  7. J. Eells, Minimal graphs, Manuscripta Math. 28 (1979), no. 1-3, 101-108. https://doi.org/10.1007/BF01647968
  8. L. Fu, An analogue of Bernstein's theorem, Houston J. Math. 24 (1998), no. 3, 415-419.
  9. R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157. https://doi.org/10.1007/BF02392726
  10. D. A. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. 28 (1980), no. 236, iii+105 pp. https://doi.org/10.1090/memo/0236
  11. H. Jenkins and J. Serrin, Variational problems of minimal surface type. II. Boundary value problems for the minimal surface equation, Arch. Rational Mech. Anal. 21 (1966), 321-342. https://doi.org/10.1007/BF00282252
  12. J. Jost and Y. L. Xin, A Bernstein theorem for special Lagrangian graphs, Calc. Var. Partial Differential Equations 15 (2002), no. 3, 299-312. https://doi.org/10.1007/s005260100125
  13. H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math. 62 (1988), no. 1, 83-114. https://doi.org/10.1007/BF01258269
  14. J. L. Lagrange, Essai d'une nouvelle methode pour determiner les maxima et les minima des formules integrales indefinies, Miscellanea Taurinensia 2 325 (1760), no. 1, 173-199.
  15. J. M. Landsberg, Minimal submanifolds defined by first-order systems of PDE, J. Differential Geom. 36 (1992), no. 2, 369-415. http://projecteuclid.org/euclid.jdg/1214448747 https://doi.org/10.4310/jdg/1214448747
  16. H. B. Lawson, Jr., Some intrinsic characterizations of minimal surfaces, J. Analyse Math. 24 (1971), 151-161. https://doi.org/10.1007/BF02790373
  17. H. B. Lawson, Jr., and R. Osserman, Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system, Acta Math. 139 (1977), no. 1-2, 1-17. https://doi.org/10.1007/BF02392232
  18. H. Lee, Minimal surface systems, maximal surface systems and special Lagrangian equations, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3775-3797. https://doi.org/10.1090/S0002-9947-2012-05786-2
  19. H. Lee, Minimal surfaces in R4 foliated by conic sections and parabolic rotations of holomorphic null curves in C4, J. Korean Math. Soc. 57 (2020), no. 1, 1-19. https://doi.org/10.4134/JKMS.j180363
  20. M. J. Micallef and B. White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. (2) 141 (1995), no. 1, 35-85. https://doi.org/10.2307/2118627
  21. J. C. C. Nitsche, Lectures on minimal surfaces. Vol. 1, translated from the German by Jerry M. Feinberg, Cambridge University Press, Cambridge, 1989.
  22. R. Osserman, Minimal varieties, Bull. Amer. Math. Soc. 75 (1969), 1092-1120. https://doi.org/10.1090/S0002-9904-1969-12357-8
  23. R. Osserman, Some properties of solutions to the minimal surface system for arbitrary codimension, in Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), 283-291, Amer. Math. Soc., Providence, RI, 1970.
  24. R. Osserman, A Survey of Minimal Surfaces, second edition, Dover Publications, Inc., New York, 1986.
  25. F. Pacard, Higher-dimensional Scherk's hypersurfaces, J. Math. Pures Appl. (9) 81 (2002), no. 3, 241-258. https://doi.org/10.1016/S0021-7824(01)01233-8
  26. T. Rado, On the problem of Plateau, Ergebnisse der Math. Band 2, Springer, Berlin, 1933.
  27. H. F. Scherk, Bemerkungen uber die kleinste Flache innerhalb gegebener Grenzen, J. Reine Angew. Math. 13 (1835), 185-208. https://doi.org/10.1515/crll.1835.13.185
  28. M.-P. Tsui and M.-T. Wang, A Bernstein type result for special Lagrangian submanifolds, Math. Res. Lett. 9 (2002), no. 4, 529-535. https://doi.org/10.4310/MRL.2002.v9.n4.a13
  29. Y. Yuan, A Bernstein problem for special Lagrangian equations, Invent. Math. 150 (2002), no. 1, 117-125. https://doi.org/10.1007/s00222-002-0232-0