References
- S. T. Becker-Kahn, Transverse singularities of minimal two-valued graphs in arbitrary codimension, J. Differential Geom. 107 (2017), no. 2, 241-325. https://doi.org/10.4310/jdg/1506650421
- R. Beyerstedt, Removable singularities of solutions to elliptic Monge-Ampere equations, Math. Z. 208 (1991), no. 3, 363-373. https://doi.org/10.1007/BF02571533
- E. Calabi, Examples of Bernstein problems for some nonlinear equations, in Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), 223-230, Amer. Math. Soc., Providence, RI, 1970.
- E. Catalan, Memoire sur les surfaces dont les rayons de courbure, en chaque point, sontegaux et de signer contraires, C. R. Acad. Sci. Paris 41 (1855), 1019-1023. Available at http://gallica.bnf.fr/ark:/12148/bpt6k2998h?rk=21459;2
- C. C. Chen and C. C. Goes, Degenerate minimal surfaces in R4, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 1-16. https://doi.org/10.1007/BF02584741
- S. Chern and R. Osserman, Complete minimal surfaces in euclidean n-space, J. Analyse Math. 19 (1967), 15-34. https://doi.org/10.1007/BF02788707
- J. Eells, Minimal graphs, Manuscripta Math. 28 (1979), no. 1-3, 101-108. https://doi.org/10.1007/BF01647968
- L. Fu, An analogue of Bernstein's theorem, Houston J. Math. 24 (1998), no. 3, 415-419.
- R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157. https://doi.org/10.1007/BF02392726
- D. A. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. 28 (1980), no. 236, iii+105 pp. https://doi.org/10.1090/memo/0236
- H. Jenkins and J. Serrin, Variational problems of minimal surface type. II. Boundary value problems for the minimal surface equation, Arch. Rational Mech. Anal. 21 (1966), 321-342. https://doi.org/10.1007/BF00282252
- J. Jost and Y. L. Xin, A Bernstein theorem for special Lagrangian graphs, Calc. Var. Partial Differential Equations 15 (2002), no. 3, 299-312. https://doi.org/10.1007/s005260100125
- H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math. 62 (1988), no. 1, 83-114. https://doi.org/10.1007/BF01258269
- J. L. Lagrange, Essai d'une nouvelle methode pour determiner les maxima et les minima des formules integrales indefinies, Miscellanea Taurinensia 2 325 (1760), no. 1, 173-199.
- J. M. Landsberg, Minimal submanifolds defined by first-order systems of PDE, J. Differential Geom. 36 (1992), no. 2, 369-415. http://projecteuclid.org/euclid.jdg/1214448747 https://doi.org/10.4310/jdg/1214448747
- H. B. Lawson, Jr., Some intrinsic characterizations of minimal surfaces, J. Analyse Math. 24 (1971), 151-161. https://doi.org/10.1007/BF02790373
- H. B. Lawson, Jr., and R. Osserman, Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system, Acta Math. 139 (1977), no. 1-2, 1-17. https://doi.org/10.1007/BF02392232
- H. Lee, Minimal surface systems, maximal surface systems and special Lagrangian equations, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3775-3797. https://doi.org/10.1090/S0002-9947-2012-05786-2
- H. Lee, Minimal surfaces in R4 foliated by conic sections and parabolic rotations of holomorphic null curves in C4, J. Korean Math. Soc. 57 (2020), no. 1, 1-19. https://doi.org/10.4134/JKMS.j180363
- M. J. Micallef and B. White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. (2) 141 (1995), no. 1, 35-85. https://doi.org/10.2307/2118627
- J. C. C. Nitsche, Lectures on minimal surfaces. Vol. 1, translated from the German by Jerry M. Feinberg, Cambridge University Press, Cambridge, 1989.
- R. Osserman, Minimal varieties, Bull. Amer. Math. Soc. 75 (1969), 1092-1120. https://doi.org/10.1090/S0002-9904-1969-12357-8
- R. Osserman, Some properties of solutions to the minimal surface system for arbitrary codimension, in Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), 283-291, Amer. Math. Soc., Providence, RI, 1970.
- R. Osserman, A Survey of Minimal Surfaces, second edition, Dover Publications, Inc., New York, 1986.
- F. Pacard, Higher-dimensional Scherk's hypersurfaces, J. Math. Pures Appl. (9) 81 (2002), no. 3, 241-258. https://doi.org/10.1016/S0021-7824(01)01233-8
- T. Rado, On the problem of Plateau, Ergebnisse der Math. Band 2, Springer, Berlin, 1933.
- H. F. Scherk, Bemerkungen uber die kleinste Flache innerhalb gegebener Grenzen, J. Reine Angew. Math. 13 (1835), 185-208. https://doi.org/10.1515/crll.1835.13.185
- M.-P. Tsui and M.-T. Wang, A Bernstein type result for special Lagrangian submanifolds, Math. Res. Lett. 9 (2002), no. 4, 529-535. https://doi.org/10.4310/MRL.2002.v9.n4.a13
- Y. Yuan, A Bernstein problem for special Lagrangian equations, Invent. Math. 150 (2002), no. 1, 117-125. https://doi.org/10.1007/s00222-002-0232-0