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BISECTORS IN THE HEISENBERG GROUP I

Gaoshun Gou, Yueping Jiang, and Ioannis D. Platis

Abstract. We show that metric bisectors with respect to the Korányi

metric in the Heisenberg group are spinal spheres and vice versa. We also

calculate explicitly their horizontal mean curvature.

1. Introduction

A metric bisector in a metric space (X, d) is the subset B(x1, x2) of points
x1 6= x2 of X that are equidistant from both x1 and x2:

B(x1, x2) = {x ∈ X | d(x1, x) = d(x2, x)}.

Metric bisectors enjoy the following property: if f : X → X is a similarity of X,
that is, a mapping satisfying a relation of the form d(f(x), f(y)) = Kfd(x, y)
for every x, y ∈ X, where Kf is a positive constant depending only on f , then
the f -image of any bisector is again a bisector. In general, bisectors can be
quite complicated objects in an arbitrary metric space X.

The same holds for Riemannian manifolds (M, g) with the metric dg induced
by the Riemannian tensor g. The most tractable example of a bisector in a
Riemannian manifold is of course that of M = Rn, g =

∑n
i=1 dx

2
i and d(x,y) =

‖x− y‖ for each x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn. Here, ‖ · ‖ is the
usual Euclidean norm. Then it follows at once that B(x1,x2) is the hyperplane
comprising of x ∈ Rn such that 2x · (x1−x2) = ‖x1‖2−‖x2‖2. We stress that
due to invariance by similarities we would have chosen the points 0 = (0, . . . , 0)
and 1 = (1, 0, . . . , 0). The bisector of this points is the hyperplane x1 = 1/2
and then we would have concluded that all bisectors are hyperplanes since all
images of x1 = 1/2 by Euclidean similarities are hyperplanes.

In this paper we study bisectors of the Heisenberg group H endowed with the
Korányi metric dK . The Heisenberg group H is the set C×R with multiplication
∗ given by

(z, t) ∗ (w, s) = (z + w, t+ s+ 2=(zw))
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for every (z, t) and (w, s) in H. The Korányi metric is then defined by dK(p, q) =
‖p ∗ q−1‖ for each p, q ∈ H. Here ‖p‖K = (|z|4 + t2)1/4 for each p = (z, t) ∈ H,
see Subsection 2.2 for details.

We note at this point that the Heisenberg group is a simple sub-Riemmanian
manifold. Any such manifold is naturally equipped with the Carnot-Carathéo-
dory metric dcc, see Subsection 2.2 and the references within. The metric dcc
is related to the metric dK in quite a few ways, for instance, among others we
stress here that both metrics have the same isometry and similarity groups.
However, bisectors with respect to dcc are generally not the same objects as
bisectors with respect to dK ; details about the study of those objects will
appear elsewhere.

In this paper, we are dealing with bisectors with respect to the Korányi
metric. Let p1, p2 ∈ H be two distinct points and the Korányi bisector

B(p1, p2) = {p ∈ H | dK(p1, p) = dK(p2, p)}.
We may normalize so that pi, i = 1, 2 lie either in the same finite or in the
same infinite C-circle, see Section 3 for details. Our main theorem is then the
following.

Theorem 1.1. A Korányi bisector is a spinal sphere. Conversely, every spinal
sphere is a Korányi bisector.

Spinal spheres are the boundaries of bisectors of complex hyperbolic plane
with respect to the Bergman metric. Such bisectors have been used to construct
Dirichlet fundamental domains or Ford fundamental domains of a discrete sub-
group of PU(n, 1). In particular, Parker and Will used isometric spheres to
construct Ford fundamental domains in [6].

Finally, as far as it concerns the horizontal geometry of Korányi bisec-
tors/spinal spheres we prove that if p1, p2 lie on an infinite C-circle, then
the Korányi bisector is a horizontal minimal surface (see Proposition 3.1), that
is, its horizontal mean curvature vanishes everywhere. However, this is not the
case if p1, p2 lie on an finite C-circle. The surface tends to be horizontally
minimal away from its characteristic locus (see Proposition 3.2).

This paper is organized as follows. In Section 2, we shall review some pre-
liminaries about the complex hyperbolic plane and the bisectors with respect
to the Bergman metric, as well as some basic knowledge for the Heisenberg
group and the Korányi metric. In Section 3, we prove Theorem 1.1 and in
Subsection 3.2 we prove Propositions 3.1 and 3.2.

2. Preliminaries

2.1. Complex hyperbolic plane H2
C and its bisectors

Let C2,1 be C3 equipped with a non degenerate, Hermitian form 〈·, ·〉 of
signature (2, 1): If z = (z1, z2, z3)T and w = (w1, w2, w3)T , then

〈z,w〉 = z1w3 + z2w2 + z3w1 = w∗Hz,
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where

H =

 0 0 1
0 1 0
1 0 0

 .
We consider the subsets

V− =
{
z ∈ C2,1

∣∣ 〈z, z〉 < 0
}
,

V0 =
{
z ∈ C2,1

∣∣ 〈z, z〉 = 0
}
,

V+ =
{
z ∈ C2,1

∣∣ 〈z, z〉 > 0
}

and let also

P : C2,1 3

 z1

z2

z3

 7→ [
z1/z3

z2/z3

]
∈ C2.

Definition 2.1. The complex hyperbolic plane H2
C is P(V−) and its boundary

∂H2
C is P(V0).

The standard model for complex hyperbolic plane we use here is the Siegel
domain model:

H2
C = {(z1, z2) ∈ C2 | 2<(z1) + |z2|2 < 0}.

Let (z1, z2) ∈ C2. The standard lift of z is z = (z1, z2, 1)T . In particular, the
standard lift of ∞ is (1, 0, 0)T . The Bergman metric of H2

C in terms of the
distance function ρ(·, ·) is given by

cosh2

(
ρ(z, w)

2

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉

,

and this definition is independent of the choice of lifts. The followings hold:

• The holomorphic sectional curvature is −1.
• The sectional curvature is pinched between −1 and −1/4.
• The group of holomorphic isometries is PU(2, 1). The group SU(2, 1),

a three-fold covering of PU(2, 1), is also used.

There are two types of geodesic submanifolds (of dimension 2): First, we have

complex lines (C-lines): Let z, w ∈ H2
C and let

C(z,w) = spanC(z,w),

with z,w being lifts of z, w, respectively. The C-line C(z, w) is the complex
projection P(C(z,w)) of C(z,w). C-lines are all isometric to

H1
C = {z ∈ C | <(z) < 0}.

Second, we have Lagrangian planes R (or R-planes): Those are characterised
by 〈z,w〉 ∈ R for all z, w ∈ R and are all isometric to

H2
R = {(z1, z2) ∈ H2

C | =(z1) = =(z2) = 0}.
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2.1.1. H2
C-bisectors. In contrast to the real hyperbolic space case, there are

no geodesic submanifolds of dimension 3. Bisectors are three dimensional sub-
manifolds which are pretty close to be geodesic.

Definition 2.2. Let z, w ∈ H2
C be two distinct points. The bisector Bρ(z, w)

of z and w is
Bρ(z, w) =

{
x ∈ H2

C | ρ(x, z) = ρ(x,w)
}
,

where ρ is the distance defined by the Bergman metric.

The followings are standard features of a bisector Bρ(z, w):

• The complex spine Σ of Bρ(z, w) is the complex geodesic C(z, w).
• The spine σ of Bρ(z, w) is Bρ(z, w) ∩ Σ, which is the geodesic corre-

sponding to Σ.
• The endpoints of the spine σ are the vertices of the bisector and they

determine it completely.

A bisector is foliated in two distinguished manners which are described in the
following theorems, see [2].

Theorem 2.3 (Slice decomposition). Let B be a bisector, Σ its complex spine
and σ its spine. Then

B = Π−1
Σ (σ) =

⋃
p∈σ

ΠΣ(p),

where ΠΣ : H2
C → Σ is the orthogonal projection to Σ.

Theorem 2.4 (Meridianal decomposition). Let σ be a geodesic in H2
C. Then

the bisector B, which has σ as its spine, is the union of all Lagrangian planes
containing σ.

The group of holomorphic isometries PU(2, 1) of H2
C acts transitively on

bisectors. Therefore we have:

Corollary 2.5. All bisectors are isometric to the bisector B0 whose spine is
σ0 = (0,∞).

We will also consider for further use the bisector B1 whose spine is σ1 =
((−1, 0), (1, 0)).

2.1.2. Spinal spheres.

Definition 2.6. A spinal sphere S is the boundary of a bisector B in ∂H2
C.

The followings hold:

• A spinal sphere is fully determined by its vertices.
• PU(2, 1) acts transitively on spinal spheres.
• Each spinal sphere is the image of S0 = ∂B0 = C via an element of

PU(2, 1).

We shall also denote by S1 the spinal sphere ∂B1. This is the hypersurface
with equation

f(x, y, t) = x(x2 + y2 + 1)− yt = 0.
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2.2. Heisenberg group

The boundary ∂H2
C \ {∞} is in a bijection with the Heisenberg group H;

this is the set C× R with multiplication ∗ given by

(z, t) ∗ (w, s) = (z + w, t+ s+ 2=(zw))

for every (z, t) and (w, s) in H. There are two natural (left invariant) metrics
defined in H. First, we have the Korányi-Cygan metric given by

dK((z, t), (w, s)) = |(z, t)−1 ∗ (w, s)|K ,
where | · |K is the Korányi gauge given by

|(z, t)|K = ||z|2 − it|1/2

for each (z, t) ∈ H.
The similarity group Sim(H) of H with respect to the Korányi-Cygan metric

comprises the following transformations:

(1) Left translations Lp, p ∈ H, defined by

Lp(q) = p ∗ q
for each q ∈ H.

(2) Rotations around the vertical axis Rθ, θ ∈ R, defined by Rθ(z, t) =
(eiθz, t), for each (z, t) ∈ H.

(3) Dilations Dδ, δ > 0, defined by Dδ(z, t) = (δz, δ2t), for each q ∈ H.
(4) Conjugation j, defined by j(z, t) = (z,−t), for each q ∈ H.

Left translations, rotations and conjugation are the isometry group of H for
dK . The similarity group Sim(H) may be viewed as the isotropy subgroup of
∞ in SU(2, 1), see [4].

The following holds, see [6, Proposition 2.6] or [5, Proposition 3.1]:

Proposition 2.7. The similarity group Sim(H) acts doubly transitively on the
Heisenberg group.

For clarification purposes, we describe in brief the second metric although it
is not of our interest in the present paper. The Heisenberg group H is a 2-step
nilpotent Lie group; we consider the basis for the left invariant vector fields of
H comprising

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
, T =

∂

∂t
.

Denote by h the Lie algebra of H. There exists a decomposition: h = V 1⊕ V 2,
where

V 1 = spanR {X,Y } , V 2 = spanR {T} .
The contact structure of H is induced by the 1-form

ω = dt+ 2(xdy − ydx) = dt+ 2=(zdz),

where z = x+iy. By the contact version of Darboux’s Theorem, ω is the unique
1-form such that X, Y ∈ kerω, ω(T ) = 1. For each point p ∈ H, V 1

p = Hp(H)



230 G. GOU, Y. JIANG, AND I. D. PLATIS

is the horizontal tangent space of H at p. On the other hand, consider the
relations

(X,X)h = (Y, Y )h = 1, (X,Y )h = (Y,X)h = 0.

From these relations we obtain the sub-Riemannian metric (·, ·)h in H; its
induced norm shall be denoted by | · |h. A smooth curve γ : [a, b]→ H with

γ(s) = (z(s), t(s)) ∈ C× R,
is called a horizontal curve if γ̇ ∈ Hγ(s)(H) for all s ∈ [a, b]. Equivalently,

ṫ(s) = −2=
(
z(s)ż(s)

)
for s ∈ [a, b]. The horizontal length of a smooth rectifiable curve γ with respect
to | · |h is given by

`h(γ) =

∫ b

a

|γ̇h(s)|hds =

∫ b

a

[(
γ̇(s), Xγ(s)

)2
h

+
(
γ̇(s), Yγ(s)

)2
h

]1/2
ds

=

∫ b

a

|ż(s)|ds.

The Carnot-Carathéodory distance dcc(p, q) between any two points p, q ∈ H is
then the infimum of horizontal lengths of all horizontal curves joining p, q. We
note the following:

• A neat way to write down explicitly the distance formula may be found
in [1].

• There is a relation between the Korányi gauge and the Carnot-Cara-
théodory norm, see Proposition 2.1 in [3].

• The metrics dK and dcc are bi-Lipschitz equivalent; however, note that
dcc is a path metric whereas dK is not.

• Both dK and dcc have the same isometry and similarity groups.

3. Bisectors in the Heisenberg group

Suppose that dK is the Korányi-Cygan metric in the Heisenberg group H.
Let p1, p2 ∈ H be two distinct points and the Korányi bisector be

B(p1, p2) = {p ∈ H | dK(p1, p) = dK(p2, p)}.
From the properties of dK it follows immediately that the image of a Korányi
bisector under a Heisenberg similarity is a Korányi bisector. Now for any two
points p1 and p2 in H there is always a unique C-circle passing through p1

and p2 (see Theorem 4.3.5 in [2]). Heisenberg similarities map finite C-circles
to finite C-circles and infinite C-circles to infinite C-circles. If B(p1, p2) is a
Korányi bisector, by Proposition 2.7, we may always normalize so that

(1) p1 = (0,−1) and p2 = (0, 1) in the case where p1, p2 lie in the same
infinite C-circle. We denote by B0 the bisector B((0,−1), (0, 1)).

(2) p1 = (−1, 0) and p2 = (1, 0) in the case where p1, p2 lie in the same
finite C-circle. We denote by B1 the bisector B((−1, 0), (1, 0)).
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3.1. Korányi bisectors

We are now set to prove Theorem 1.1:

Figure 3.1. Korányi bisector, finite C-circle case: The sur-
face f(x, y, t) = x(x2 + y2 + 1)− yt = 0.

Proof. Let BK(p1, p2) be a Korányi bisector. It suffices to consider the cases
where this is B0

K and B1
K , as above.

In the case of B0
K , the equation

dK((0,−1), p) = dK((0, 1), p)

is just
|z|4 + (t+ 1)2 = |z|4 + (t− 1)2

from where it follows that

B0
K = {(z, t) ∈ H | t = 0} = C.

The complex plane C is the spinal sphere S0 of the complex hyperbolic bisector
given by =(z2) = 0, see also Example 5.1.7 in [2].

In the case of B1
K , the equation

dK((−1, 0), p) = dK((1, 0), p)

is
|z + 1|4 + (t− 2y)2 = |z − 1|4 + (t+ 2y)2.

After short calculations we obtain the hypersurface

(3.1) f(x, y, t) = x(x2 + y2 + 1)− yt = 0,

which is also the spinal sphere, S1.
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Now conversely, any spinal sphere may be mapped to one of S0 or S1 under
an element of Sim(H). The proof is thus complete. �

3.2. Horizontal geometry of Korányi bisectors

There is a major distinction in the horizontal geometry of Korányi bisec-
tors. Before we state our result, we review some basic features of horizontal
geometry of hypersurfaces in H. Let F : H → R be a C2 map and consider
the hypersurface S in H defined by the equation F (x, y, t) = 0. The horizontal
normal to S is the vector field

Nh
S = XF ·X + Y F · Y.

The characteristic locus of S is the set

C(S) = {p ∈ S | Xp(F ) = Yp(F ) = 0}.

The unit horizontal normal to S is

nhS =
Nh
S

|Nh
S |h

, |Nh
S |h =

[
(XF )2 + (Y F )2

]1/2
.

Set nhS = n1 ·X + n2 · Y . The horizontal mean curvature of S is then defined
as

(3.2) 2Hh = X(n1) + Y (n2).

Straightforward calculations deduce

X(n1) =
XXF · (Y F )2 −XF · Y F ·XY F

[(XF )2 + (Y F )2]
3/2

,

Y (n1) =
Y XF · (Y F )2 −XF · Y F · Y Y F

[(XF )2 + (Y F )2]
3/2

,

X(n2) =
XY F · (XF )2 −XF · Y F ·XXF

[(XF )2 + (Y F )2]
3/2

,

Y (n2) =
Y Y F · (XF )2 −XF · Y F · Y XF

[(XF )2 + (Y F )2]
3/2

.

The above relations show that Eq. (3.2) also reads as

(3.3) 2Hh =
(Y F )2 ·XXF + (XF )2 · Y Y F −XF · Y F · (XY F + Y XF )

[(XF )2 + (Y F )2]
3/2

.

Horizontal mean curvature is invariant under Heisenberg similarities. The sur-
face S is horizontally minimal if Hh(S) ≡ 0.

Proposition 3.1. In the case where the points lie on an infinite C-circle, a
Korányi bisector is a horizontally minimal surface.
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Proof. The complex plane defined by F (x, y, t) = t = 0 is well known to be
horizontally minimal. For clarity, we carry out the details: We have

XF = 2y, Y F = −2x,

therefore the characteristic locus comprises the single point (0, 0, 0). Away from
this point,

nh =
y ·X − x · Y√

x2 + y2
.

Hence

2Hh = X(y/
√
x2 + y2)− Y (x/

√
x2 + y2)

= ∂x(y/
√
x2 + y2)− ∂y(x/

√
x2 + y2)

= 0. �

This is not the case when the points defining the Korányi bisector lie in a
finite C-circle:

Proposition 3.2. The horizontal mean curvature of the spinal sphere S1 di-
verge to infinity near the characteristic points (0,±1, 0) and tends to 0 away
from those points.

Proof. S1 is the hypersurface given by

f(x, y, t) = x(x2 + y2 + 1)− yt = 0.

The partial derivatives of f are

fx = 3x2 + y2 + 1,

fy = 2xy − t,
ft = −y.

There are no singular points here, thus S1 is a C2 hypersurface. Now,

Xf = 3x2 − y2 + 1,

Y f = 4xy − t.
Therefore the characteristic locus is the set of points belonging to both the
curve defined by the equations

y2 − 3x2 = 1, t = 4xy,

that is, the intersection of a hyperbolic cylinder and a saddle surface, and to
the surface f(x, y, t) = 0. Plugging in the former two equations in the latter,
we have

x(x2 + 3x2 + 2)− 4xy2 = 0 =⇒ x = 0 or 2x2 − 2y2 = 1.

If x = 0, then t = 0 and y2 = 1 so we obtain the points (0,±1, 0). If 2x2−2y2 =
1, then this together with y2 − 3x2 = 2 gives −4x2 = 3 which is absurd. We
conclude that the characteristic locus of the surface comprises the two points
(0,±1, 0).
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As now for the second derivatives, we have

XXf = 6x, Y Y f = 6x,

XY f = 2y, Y Xf = −2y.

Therefore by formula (3.3) we immediately obtain

2Hh =
XXf

[(Xf)2 + (Y f)2]
1/2

=
6x

[(3x2 − y2 + 1)2 + (4xy − t)2]
1/2

.

The only points (x, y, t) on the surface with y = 0 are points of the form (0, 0, t).
At those points Hh = 0. When y 6= 0 we obtain from f(x, y, t) = 0 that

t =
x

y
(x2 + y2 + 1).

In this manner Hh becomes a function Hh = Hh(x, y) with

Hh(x, y) =
3xy

[y2(3x2 − y2 + 1)2 + x2(3y2 − x2 − 1)2]
1/2

.

Figure 3.2. The horizontal mean curvature of the surface f = 0.

It is now straightforward to show (see also Figure 3.2) that the curvature tends
to zero away from the critical points and it is bounded near them. �
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