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ON CERTAIN ESTIMATES FOR ROUGH GENERALIZED

PARAMETRIC MARCINKIEWICZ INTEGRALS

Daiqing Zhang

Abstract. This paper is devoted to establishing certain Lp bounds for

the generalized parametric Marcinkiewicz integral operators associated to
surfaces generated by polynomial compound mappings with rough ker-

nels given by h ∈ ∆γ(R+) and Ω ∈ WFβ(Sn−1) for some γ, β ∈ (1,∞].

As applications, the corresponding results for the generalized paramet-
ric Marcinkiewicz integral operators related to the Littlewood-Paley g∗λ
functions and area integrals are also presented.

1. Introduction

The main motivation of this paper is to establish some new results con-
cerning rough generalized parametric Marcinkiewicz integrals. To be more
precise, we shall establish certain Lp bounds for rough generalized parametric
Marcinkiewicz integrals along polynomial compound curves under some pretty
much weaker size conditions assumed on the integral kernels both on the unit
sphere and in the radial directions.

Throughout this paper, let Rn (n ≥ 2) be the n-dimensional Euclidean space
and Sn−1 denote the unit sphere in Rn equipped with the induced Lebesgue
measure dσ. For y ∈ Rn \ {0}, we set y′ = y/|y|. Let ΓP,ϕ = {P (ϕ(|y|))y′ : y ∈
Rn} be the polynomial compound curves generated by a continuous function
ϕ : [0,∞) → R and a real polynomial P on R satisfying P (0) = 0. Assume
that Ω ∈ L1(Sn−1) is a function of homogeneous degree zero and satisfies

(1)

∫
Sn−1

Ω(u)dσ(u) = 0.

Let 1 < q < ∞ and h be a measurable function on R+ := [0,∞), the general-
ized parametric Marcinkiewicz integral operators along polynomial compound
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curves Mq
h,Ω,P,ϕ,ρ are defined by

(2) Mq
h,Ω,P,ϕ,ρf(x)=

(∫ ∞
0

∣∣∣ 1

tρ

∫
|y|≤t

f(x−P (ϕ(|y|))y′)h(|y|)Ω(y)

|y|n−ρ
dy
∣∣∣q dt
t

)1/q

,

where ρ = ς + iτ (ς, τ ∈ R with ς > 0) and f ∈ S (Rn) (the space of Schwartz
functions on Rn).

For the sake of simplicity, we denote Mq
h,Ω,P,ϕ,ρ = Mq

Ω,P,ϕ,ρ when h ≡ 1.

When ϕ(t) = t and P (t) = t, we denote Mq
h,Ω,P,ϕ,ρ = Mq

h,Ω,ρ and Mq
Ω,P,ϕ,ρ =

Mq
Ω,ρ. We also denote Mq

h,Ω,P,ϕ,ρ = Mh,Ω,P,ϕ,ρ, M
q
h,Ω,ρ = Mh,Ω,ρ and Mq

Ω,ρ =
MΩ,ρ when q = 2.

When ρ = 1, the operator MΩ,ρ reduces to the well-known Marcinkiewicz
integral operator MΩ, which was originally introduced by Stein [23] who proved
that MΩ is bounded on Lp(Rn) for 1 < p ≤ 2 if Ω ∈ Lipα(Sn−1) for 0 <
α ≤ 1. Subsequently, Benedek et al. [5] improved the condition on rough
kernel Ω to Ω ∈ C1(Sn−1) and extended the above range on index p to 1 <
p < ∞. Since then, a considerable amount of attentions has been given to
study Marcinkiewicz integrals, successfully extending the above results to more
rough kernels. For example, see [8, 9] for the case Ω ∈ H1(Sn−1) (the Hardy
space on Sn−1), [3, 4] for the case Ω ∈ L(logL)1/2(Sn−1), [3, 10] for the case

Ω ∈ B
(0,−1/2)
r (Sn−1) (the block space generated by r-blocks), [6, 24] for the

case Ω ∈ Fβ(Sn−1) (the Grafakos–Stefanov class). When ρ 6≡ 1, the operator
MΩ,ρ is just the classical parametric Marcinkiewicz integral operator MΩ,ρ.
Hörmander [14] (resp., Sakamoto and Yabuta [22]) first studied the Lp bounds
for MΩ,ρ with real (resp., complex) number ρ. Later on, the above results were
improved and generalized by many authors (see [17,21,24] for example).

On the other hand, the investigation on the generalized Marcinkiewicz inte-
gral operator has also attracted the attention of many authors. When ρ = 1,
we denote Mq

Ω,ρ = Mq
Ω. The operator Mq

Ω was first investigated by Chen,

Fan and Ying [7] who obtained that Mq
Ω is bounded from the homogeneous

Triebel–Lizorkin space Ḟ 0
p,q(Rn) to Lp(Rn) for 1 < p, q < ∞ under the con-

ditions that Ω ∈ Ls(Sn−1) for some s ∈ (1,∞]. The above result was later
improved by Fan and Wu [12] to the case Ω ∈ L(logL)1/q(Sn−1) for q ≥ 2
and Ω ∈ L(logL)1/q+ε(Sn−1) for 1 < q < 2 and any ε > 0. Meanwhile,

Al-Qassem et al. [1] established the bounds of Mq
Ω : Ḟ 0

p,q(Rn) → Lp(Rn) for

p ∈ (2β/(2β − 1), 2β) and q ∈ (2β/(2β − 1), 2β) provided that Ω ∈ Fβ(Sn−1)
for some β > 1. Recently, Liu [18] improved and generalized the result of [1].
We now introduce the main result of [18] as follows:

Theorem A ([18]). Let P be a real polynomial on R of degree N and satisfy
P (0) = 0 and ϕ ∈ F. Here F is the set of all functions φ satisfying the following
conditions:

(a) φ is a positive increasing C1((0,∞)) function such that tδφ′(t) is mono-
tonic on R+ for some δ ∈ R;
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(b) there exist Cφ, cφ > 0 such that tφ′(t) ≥ Cφφ(t) and φ(2t) ≤ cφφ(t) for
all t > 0.

Assume that h ≡ 1 and Ω ∈ Fβ(Sn−1) for some β > 1/2 and satisfying (1).
Then

‖Mq
h,Ω,P,ϕ,ρf‖Lp(Rn) ≤ Cp‖f‖Ḟ 0

p,q(Rn)

for p ∈ ( 2β+1
2β , 1 + 2β) and q ∈ ( 2β+1

2β , 1 + 2β). Here the constant Cp > 0 is

independent of the coefficients of P , but may depend on p, q, n, ϕ, ρ,N .

For the generalized Marcinkiewicz integral operator with radial kernel h, Le
[15] observed that Mq

h,Ω is bounded from Ḟ 0
p,q(Rn) to Lp(Rn) for 1 < p, q <∞,

provided that h ∈ ∆max{2,q′}(R+) and Ω ∈ L(logL)(Sn−1). Here ∆γ(R+) (1 ≤
γ ≤ ∞) is the collection of all measurable functions h : [0,∞)→ R satisfying

‖h‖∆γ(R+) = sup
R>0

( 1

R

∫ R

0

|h(t)|γdt
)1/γ

<∞.

It is easy to see that ∆γ(R+) enjoys the properties that L∞(R+) = ∆∞(R+),
∆γ2(R+) ( ∆γ1(R+) for γ2 > γ1 > 0. Recently, Al-Qassem et al. [2] improved
the main results of [12,15] to more weaker size conditions on h. Very recently,
Liu et al. [19] extended the main results of [2] to the generalized Marcinkiewicz
integral operator along polynomial compound curves. Partial results of [19] can
be formulated as follows:

Theorem B ([19]). Let P be a real polynomial on R of degree N and satisfy
P (0) = 0 and ϕ ∈ F. Let 1 < q < ∞, h ∈ ∆γ(R+) for some γ ∈ (2,∞] and

Ω ∈ L(logL)1/q(Sn−1) ∪
( ⋃
r>1

B
(0,1/q−1)
r (Sn−1)) satisfying (1). Then

‖Mq
h,Ω,P,ϕ,ρf‖Lp(Rn) ≤ Cp‖h‖∆γ(R+)‖f‖Ḟ 0

p,q(Rn)

for 1 < p < q if 2 < γ < ∞ and q′ ≥ γ, and for γ′ < p < ∞ if 2 < γ ≤ ∞
and q′ < γ. Here the above constants Cp > 0 are independent of h and the
coefficients of P .

Remark 1.1. For the class F, there are some model examples such as tα (α > 0),
tβ ln(1 + t) (β ≥ 1), t ln ln(e+ t), real-valued polynomials P on R with positive
coefficients and P (0) = 0 and so on. Note that there exists Bϕ > 1 such that
ϕ(2t) ≥ Bϕϕ(t) for any ϕ ∈ F (see [17]).

In this paper we focus on the generalized parametric Marcinkiewicz integrals
Mq
h,Ω,P,ϕ,ρ with rough kernels h ∈ ∆γ(R+) for some γ > 1 and Ω ∈WFβ(Sn−1)

for some β > 0, where the function class WFβ(Sn−1) for β > 0 is the set of all
L1(Sn−1) functions Ω which satisfy

sup
ξ∈Sn−1

∫∫
Sn−1×Sn−1

|Ω(θ)Ω(u′)| logβ
2e

|(θ − u′) · ξ|
dσ(θ)dσ(u′) <∞.
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We would like to point out that the class WFβ(Sn−1) was originally introduced
by Fan and Sato [11] in more general form. It is closely related to the Grafakos–
Stefanov function class Fβ(Sn−1), which was introduced in [13] and is given by

Fβ(Sn−1) :=
{

Ω ∈ L1(Sn−1) :

sup
ξ∈Sn−1

∫
Sn−1

|Ω(y′)| logβ
2

|ξ · y′|
dσ(y′) <∞

}
for β > 0.

In 2009, Fan and Sato [11] first studied the Lp boundedness for the singular
integrals with rough kernels h ∈ ∆γ(R+) and Ω ∈ WFβ(Sn−1). Later on, a
considerable amount of attention has been given to investigate the boundedness
for various kinds of integral operators under the same conditions on rough
kernels. For examples, see [16, 20] for singular integral operators, [21, 25] for
Marcinkiewicz integral operators. Particularly, it was shown in [21] that:

Theorem C ([21]). Let P be a real polynomial on R of degree N and satisfy
P (0) = 0 and ϕ ∈ F. Let h ∈ ∆γ(R+) for some γ ∈ (1,∞] and Ω ∈WFβ(Sn−1)
for some β > 1

2 max{2, γ′} satisfying (1). Then

‖Mh,Ω,P,ϕ,ρf‖Lp(Rn) ≤ Cp‖f‖Lp(Rn)

for | 1p −
1
2 | < min{ 1

γ′ ,
1
2} −

1
β+1 min{ 1

γ′ + 1
2 , 1}. Here the constant Cp > 0 is

independent of the coefficients of P .

It was shown in [11,16] that

Fβ(S1) ⊂WFβ(S1) and WF2β(Sn−1) \ Fβ(Sn−1) 6= ∅ for β > 0;⋃
r>1

Lr(Sn−1) ⊂ Fβ2
(Sn−1) ⊂ Fβ1

(Sn−1) for 0 < β1 < β2 <∞;⋃
r>1

Lr(Sn−1) ⊂WFβ2
(Sn−1) ⊂WFβ1

(Sn−1) for 0 < β1 < β2 <∞.

Moreover, the following inclusion relations are valid:

Lr(Sn−1) ( L(logL)β1(Sn−1) ( L(logL)β2(Sn−1) for r > 1 and 0 < β2 < β1;

L(logL)β(Sn−1) ( H1(Sn−1) for β ≥ 1;

L(logL)β(Sn−1) * H1(Sn−1) * L(logL)β(Sn−1) for 0 < β < 1;⋃
q>1

Lq(Sn−1) (
⋂
β>1

Fβ(Sn−1) * L logL(Sn−1);⋂
β>1

Fβ(Sn−1) * H1(Sn−1) *
⋃
β>1

Fβ(Sn−1);⋃
r>1

Lr(Sn−1) ( B(0,v)
q (Sn−1) for q > 1 and v > −1;

B(0,v2)
q (Sn−1) ( B(0,v1)

q (Sn−1) for q > 1 and v2 > v1 > −1;⋃
q>1

B(0,v)
q (Sn−1) *

⋃
r>1

Lr(Sn−1) for v > −1;
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B(0,v)
q (Sn−1) ⊂ H1(Sn−1) + L(logL)1+v(Sn−1) for q > 1, v > −1.

Based on the above, a question that arises naturally is the following.

Question. Is the operator Mq
h,Ω,P,ϕ,ρ with q 6= 2 bounded from Ḟ 0

p,q(Rn) to

Lp(Rn) under the same conditions h,Ω, P, ϕ in Theorem C?

The main motivation of this paper is to answer the above question. Our
main results can be listed as follows:

Theorem 1.2. Let P be a real polynomial on R of degree N and satisfy
P (0) = 0 and ϕ ∈ F. Assume that h ∈ ∆γ(R+) for some γ ∈ (1,∞] and
Ω ∈ WFβ(Sn−1) for some β > γ̃ satisfying (1). Here γ̃ = max{2, γ′}. Then

for any 2β
2β−γ̃ < q < 2β

γ̃ and 1
qγ + γ̃

2βγ′ <
1
p <

1
qγ + 1

γ′ −
γ̃

2βγ′ , it holds that

‖Mq
h,Ω,P,ϕ,ρf‖Lp(Rn) ≤ Cp‖h‖∆γ(R+)‖f‖Ḟ 0

p,q(Rn).

Here the constant Cp > 0 is independent of h and the coefficients of P , but
may depend on p, d, N, ϕ.

Theorem 1.3. Let P be a real polynomial on R of degree N and satisfy
P (0) = 0 and ϕ ∈ F. Assume that h ∈ ∆γ(R+) for some γ ∈ [2,∞] and

Ω ∈WFβ(Sn−1) for some β > 2 satisfying (1). Then for (p, q) ∈ ( βγ′

β+γ′−2 , β)2

or β
β−1 < p < q ≤ 2, it holds that

‖Mq
h,Ω,P,ϕ,ρf‖Lp(Rn) ≤ Cp‖h‖∆γ(R+)‖f‖Ḟ 0

p,q(Rn).

Here the constant Cp > 0 is independent of h and the coefficients of P , but
may depend on p, d, N, ϕ.

Theorem 1.4. Let P be a real polynomial on R of degree N and satisfy
P (0) = 0 and ϕ ∈ F. Assume that h ∈ ∆γ(R+) for some γ ∈ [2,∞] and
Ω ∈WFβ(Sn−1) for some β > 1 satisfying (1). Then

‖Mq
h,Ω,P,ϕ,ρf‖Lp(Rn) ≤ Cp‖h‖∆γ(R+)‖f‖Ḟ 0

p,q(Rn)

provided that one of the following conditions holds:

(i) q ∈ (γ
′(β−1)+2

β , γ′(β − 1) + 2), p ∈ (γ
′(β−1)+2

β , 2] and p < q;

(ii) q ∈ (β+1
β , β + 1), p ∈ (2, β + 1) and p > q;

(iii) q ∈ (γ
′(β−1)+2

β , β + 1) and p = q.

Here the constant Cp > 0 is independent of h and the coefficients of P , but
may depend on p, d, N, ϕ.

Remark 1.5. There are some remarks as follows:
(i) By the fact that Fβ(S1) ⊂ WFβ(S1) for β > 0, we know that our main

results also hold if the condition Ω ∈WFβ(Sn−1) replacing by Ω ∈WFβ(Sn−1)
when n = 2.

(ii) Our main results are new even in the special case P (t) = ϕ(t) = t and
ρ = 1.
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The rest of this paper will be organized as follows. Section 2 contains some
preliminary notations and lemmas, which are the main ingredients of our proofs
of main results. The proofs of Theorems 1.2–1.4 will be given in Section 3.
Finally, we establish the Lp bounds for generalized parametric Marcinkiewicz
integral operators related to Littlewood-Paley g∗λ-functions and area integrals
in Section 4. We remark that the proofs of Theorems 1.2–1.4 are motivated by
[18,19,21].

Throughout this paper, the letter C will stand for positive constants not
necessarily the same one at each occurrence but is independent of the essential
variables. Especially, the letter Cα,β denote the positive constants that depend
on the parameters α, β.

2. Preliminary notations and lemmas

Let us begin with the definition of the homogeneous Triebel–Lizorkin spaces.

Definition (homogeneous Triebel–Lizorkin spaces). Let S ′(Rn) be the tem-
pered distribution class on Rn. For α ∈ R and 0 < p, q ≤ ∞ (p 6= ∞), the

homogeneous Triebel–Lizorkin spaces Ḟαp,q(Rn) is defined by

Ḟαp,q(Rn)=
{
f ∈ S ′(Rn) : ‖f‖Ḟαp,q(Rn) =

∥∥∥(∑
i∈Z

2−iαq|Ψi ∗ f |q
)1/q∥∥∥

Lp(Rn)
<∞

}
,

where Ψ̂i(ξ) = φ(2iξ) for i ∈ Z and φ ∈ C∞c (Rn) satisfies the conditions:
0 ≤ φ(x) ≤ 1; supp(φ) ⊂ {x ∈ Rn : 1/2 ≤ |x| ≤ 2}; φ(x) ≥ c > 0 if
3/5 ≤ |x| ≤ 5/3;

∑
j∈Z φ(2jξ) = 1 for ξ 6= 0.

Remark 2.1. It is well-known that S(Rn) is dense in Ḟαp,q(Rn) and also the
following hold:

(i) Ḟ 0
p,2(Rn) = Lp(Rn) for 1 < p <∞;

(ii) (Ḟαp,q(Rn))∗ = Ḟ−αp′,q′(Rn) for α ∈ R and 1 < p, q <∞;

(iii) Ḟαp,q1(Rn) ⊂ Ḟαp,q2(Rn) for α ∈ R, 0 < p ≤ ∞ and q1 ≤ q2.

Let {ak} be a lacunary sequence with satisfying infk∈Z
ak+1

ak
≥ a > 1. Let

η0 ∈ C∞(R) be an even function satisfying 0 ≤ η0(t) ≤ 1, η0(0) = 1 and

η0(t) = 0 for |t| ≥ 1. Set η(ξ) = 1 for |ξ| ≤ 1, η(ξ) = η0( |ξ|−1
a−1 ), where a > 1.

Then, η satisfies χ|ξ|≤1(ξ) ≤ η(ξ) ≤ χ|ξ|≤a(ξ) and |∂αη(ξ)| ≤ cα(a− 1)−|α| for

ξ ∈ Rn and α ∈ Nd, where cα is independent of a. We define functions {ψk}k
on Rn by

ψk(ξ) = η(a−1
k+1ξ)− η(a−1

k ξ), ξ ∈ Rn.
It is easy to see that the function ψk enjoys the following properties:

supp(ψk) ⊂ {ak ≤ |ξ| ≤ aak+1}; supp(ψk) ∩ supp(ψj) = ∅ for |j − k| ≥ 2;∑
k∈Z

ψk(ξ) = 1 for ξ ∈ Rn \ {0}.
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The following is a well-known characterization of homogeneous Triebel–
Lizorkin spaces, which plays a key role in our proofs.

Lemma 2.2 ([25]). Let {ak}k∈Z be a lacunary sequence of positive numbers

with 1 < a ≤ ak+1

ak
≤ b for all k ∈ Z. Let Φk be defined on Rn by Φ̂k(ξ) = ψk(ξ)

and An denote the set of all polynomials on Rn. Let 1 < p, q <∞ and α ∈ R.
For f ∈ S(Rn)/An, we define the norm ‖f‖Ḟαp,q({Φk}k∈Z,Rn) by

‖f‖Ḟαp,q({Φk}k∈Z,Rn) =
∥∥∥(∑

k∈Z
aαqk |Φk ∗ f |

q
)1/q∥∥∥

Lp(Rn)
.

Then ‖f‖Ḟαp,q({Φk}k∈Z,Rn) is equivalent to ‖f‖Ḟαp,q(Rn).

Let h,Ω, ρ be given as in (2) and Γ : Rn → Rd (d ≥ 1) be a mapping. We
define the family of measures {σh,Ω,Γ,t}t>0 on Rd as follows:

(3) σ̂h,Ω,Γ,t(ξ) =
1

tρ

∫
t/2<|y|≤t

e−2πiξ·Γ(y)h(|y|)Ω(y)

|y|n−ρ
dy.

The related maximal operator σ∗h,Ω,Γ is defined by

σ∗h,Ω,Γ(f)(x) = sup
t>0

∣∣|σh,Ω,Γ,t| ∗ f(x)
∣∣,

where |σh,Ω,Γ,t| is defined in the same way as σh,Ω,Γ,t, but with Ω and h replaced
by |Ω| and |h|, respectively.

In what follows, for the sake of simplicity, we denote σ∗,1h,Ω,Γ = σ∗h,Ω,Γ when

ρ = 1 and σ∗,1Ω,Γ = σ∗,1h,Ω,Γ when h ≡ 1. In addition, for any arbitrary functions

f : Rn → R and g : Rn × R+ → R, we define the function f̃ : Rn → R and

g̃ : Rn × R+ → R by f̃(x) = f(−x) and g̃(x, t) = g(−x, t) for all x ∈ Rn and
t ∈ R+.

Lemma 2.3. Let ϕ ∈ F and Γ(y) = P(ϕ(|y|)y′), where P = (P1, P2, . . . , Pd)
with each Pj being a real-valued polynomial on Rn. Suppose that Ω ∈ L1(Sn−1)
and h ∈ ∆γ(R+) for some 1 < γ ≤ ∞. Then for γ′ < p ≤ ∞, there exists a
constant C > 0 such that

(4) ‖σ∗h,Ω,Γ(f)‖Lp(Rd) ≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)‖f‖Lp(Rd).

Here the above constant C > 0 is independent of h, Ω, γ and the coefficients of
{Pj}dj=1, but depend on ϕ and p.

Proof. By a change of variable and Hölder’s inequality one finds∣∣|σh,Ω,Γ,t| ∗ f(x)
∣∣

≤
∫ t

t/2

∫
Sn−1

|Ω(y′)||f(x− P(ϕ(r)y′))|dσ(y′)|h(r)|dr
r

≤ 2‖h‖∆γ(R+)

(∫ t

t/2

∣∣∣ ∫
Sn−1

|Ω(y′)||f(x− P(ϕ(r)y′))|dσ(y′)
∣∣∣γ′ dr

r

)1/γ′
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≤ 2‖h‖∆γ(R+)‖Ω‖
1/γ
L1(Sn−1)

×
(∫ t

t/2

∫
Sn−1

|Ω(y′)||f(x− P(ϕ(r)y′))|γ
′
dσ(y′)

dr

r

)1/γ′

.

It follows that

σ∗h,Ω,Γ(f)(x)(5)

≤ 2‖h‖∆γ(R+)‖Ω‖
1/γ
L1(Sn−1)

×
(∫

Sn−1

|Ω(y′)|
(

sup
t>0

∫ t

t/2

|f(x− P(ϕ(r)y′))|γ
′ dr

r

)
dσ(y′)

)1/γ′

.

It was shown in the proof of [18, Lemma 3.1] that

(6)
∥∥∥ sup
t>0

∫ t

t/2

|f(· − P(ϕ(r)y′))|γ
′ dr

r

∥∥∥
Lp(Rd)

≤ C‖f‖Lp(Rd)

for all γ′ < p ≤ ∞. Here the constant C > 0 is independent of y′ and the
coefficients of {Pj}dj=1, but may depend on ϕ, p. By (5), (6) and Minkowski’s
inequality it holds that

‖σ∗h,Ω,Γ(f)‖Lp(Rd) ≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)‖f‖Lp(Rd)

for γ′ < p ≤ ∞. This proves (4). �

As several applications of Lemma 2.3, we can obtain the following lemmas,
which play key roles in the proofs of main results.

Lemma 2.4. Let 1 < q < ∞ and Γ be given as in Lemma 2.3. Suppose that
Ω ∈ L1(Sn−1) and h ∈ ∆γ(R+) for some γ ∈ (1,∞]. Then for (q′γ)′ < p < qγ,
it holds that ∥∥∥(∑

k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|q

dt

t

)1/q∥∥∥
Lp(Rd)

(7)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rd)

.

Here the above constant C > 0 is independent of h,Ω, γ and the coefficients of
{Pj}dj=1, but may depend on ϕ and p.

Proof. For a fixed 1 < q <∞ and let us consider the following cases:
Case 1: ((q′γ)′ < p < q). By duality, there exists a sequence of functions

{fk(x, t)} defined on Rd × R+ with ‖{fk(·, ·)}‖Lp′ (Rd,`q′ (Lq′ ([2k,2k+1],dt/t))) ≤ 1

such that ∥∥∥∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ f̃k(·, t)|q

′ dt

t

∥∥∥
Lp′/q′ (Rd)

=
∑
k∈Z

∫
Rd

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ f̃k(x, t)|q

′ dt

t
u(x)dx.
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By Hölder’s inequality one finds that∫
Rd

∑
k∈Z

∫ 2k+1

2k
σh,Ω,Γ,t ∗ gk(x)fk(x, t)

dt

t
dx

=

∫
Rd

∑
k∈Z

gk(x)

∫ 2k+1

2k
σh,Ω,Γ,t ∗ f̃k(x, t)

dt

t
dx

≤
∥∥∥(∑

k∈Z
|gk|q

)1/q∥∥∥
Lp(Rd)

∥∥∥∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ f̃k(·, t)|q

′ dt

t

∥∥∥1/q′

Lp′/q′ (Rd)
.

Noting that p′/q′ > 1, by duality again there exists a nonnegative function

u ∈ L(p′/q′)′(Rd) with ‖u‖L(p′/q′)′ (Rd) = 1 such that∥∥∥∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ f̃k(·, t)|q

′ dt

t

∥∥∥
Lp′/q′ (Rd)

=
∑
k∈Z

∫
Rd

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ f̃k(x, t)|q

′ dt

t
u(x)dx.

Hence, we can get∥∥∥(∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|q

dt

t

)1/q∥∥∥
Lp(Rd)

(8)

≤
∥∥∥(∑

k∈Z
|gk|q

)1/q∥∥∥
Lp(Rd)

×
(∑
k∈Z

∫
Rd

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ f̃k(x, t)|q

′ dt

t
u(x)dx

)1/q′

.

By a change of variable and Hölder’s inequality, one has∫
t/2<|y|≤t

|h(|y|)Ω(y)|
|y|n

dy =

∫ t

t/2

|h(r)|dr
r

∫
Sn−1

|Ω(y′)|dσ(y′)(9)

≤ 2‖h‖∆γ(R+)‖Ω‖L1(Sn−1).

Combining (9) with Hölder’s inequality implies that

|σh,Ω,Γ,t ∗ gk(x)|q
′

(10)

=
(∫

t/2<|y|≤t
|gk(x− Γ(y))| |h(|y|)Ω(y)|

|y|n
dy
)q′

≤
(∫

t/2<|y|≤t

|h(|y|)Ω(y)|
|y|n

dy
)q′/q

×
∫
t/2<|y|≤t

|gk(x− Γ(y))|q
′ |h(|y|)Ω(y)|

|y|n
dy
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≤ (2‖h‖∆γ(R+)‖Ω‖L1(Sn−1))
q′/q

∫
t/2<|y|≤t

|gk(x− Γ(y))|q
′ |h(|y|)Ω(y)|

|y|n
dy.

Then we get from (10) that

∑
k∈Z

∫
Rd

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ f̃k(x, t)|q

′ dt

t
u(x)dx(11)

≤ (2‖h‖∆γ(R+)‖Ω‖L1(Sn−1))
q′−1

×
∑
k∈Z

∫
Rd

∫ 2k+1

2k

∫
t/2<|y|≤t

|f̃k(x− Γ(y), t)|q
′ |h(|y|)Ω(y)|

|y|n
dy
dt

t
u(x)dx.

Noting that γ′ < (p′/q′)′ < ∞. By Hölder’s inequality and invoking Lemma
2.3, one has∑

k∈Z

∫
Rd

∫ 2k+1

2k

∫
t/2<|y|≤t

|f̃k(x− Γ(y), t)|q
′ |h(|y|)Ω(y)|

|y|n
dy
dt

t
u(x)dx

≤
∫
Rd

∑
k∈Z

∫ 2k+1

2k
|fk(z, t)|q

′
∫
t/2<|y|≤t

u(Γ(y)− z) |h(|y|)Ω(y)|
|y|n

dydz
dt

t

≤ 2
(∑
k∈Z

∫ 2k+1

2k
|fk(z, t)|q

′ dt

t

)
σ∗,1h,Ω,Γ(ũ)(z)dz

≤ 2
∥∥∥∑
k∈Z

∫ 2k+1

2k
|fk(·, t)|q

′ dt

t

∥∥∥
Lp′/q′ (Rd)

‖σ∗,1h,Ω,Γ(ũ)‖L(p′/q′)′ (Rd)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1).

This together with (8) and (11) implies (7) for (q′γ)′ < p < q.
Case 2: (p = q). By the arguments similar to those used in deriving (11),

one can get

|σh,Ω,Γ,t ∗ gk(x)|q(12)

≤ (2‖h‖∆γ(R+)‖Ω‖L1(Sn−1))
q−1

∫
t/2<|y|≤t

|gk(x− Γ(y))|q |h(|y|)Ω(y)|
|y|n

dy.

By (9), (12), Hölder’s inequality and Fubini’s theorem, we have∥∥∥(∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|q

dt

t

)1/q∥∥∥q
Lp(Rd)

=

∫
Rd

∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk(x)|q dt

t
dx

≤ (2‖h‖∆γ(R+)‖Ω‖L1(Sn−1))
q−1
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×
∫
Rd

∑
k∈Z

∫ 2k+1

2k

∫
t/2<|y|≤t

|gk(x− Γ(y))|q |h(|y|)Ω(y)|
|y|n

dy
dt

t
dx

≤ (2‖h‖∆γ(R+)‖Ω‖L1(Sn−1))
q−1

∫
Rd

∑
k∈Z
|gk(x)|qdx

× sup
k∈Z

∫ 2k+1

2k

∫
t/2<|y|≤t

|h(|y|)Ω(y)|
|y|n

dy
dt

t

≤ 2q(‖h‖∆γ(R+)‖Ω‖L1(Sn−1))
q
∥∥∥(∑

k∈Z
|gk|q

)1/q∥∥∥q
Lp(Rd)

,

which gives (7) for p = q.
Case 3: (q < p < qγ). By duality and the fact that p/q ∈ (1,∞), there

exists a nonnegative function f in L(p/q)′(Rd) with ‖f‖L(p/q)′ (Rd) ≤ 1 such that∥∥∥(∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|q

dt

t

)1/q∥∥∥q
Lp(Rd)

(13)

=

∫
Rd

∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk(x)|q dt

t
f(x)dx.

By a change of variable and (12), it holds that∫
Rd

∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk(x)|q dt

t
f(x)dx(14)

≤ (2‖h‖∆γ(R+)‖Ω‖L1(Sn−1))
q−1

×
∫
Rd

∑
k∈Z

∫ 2k+1

2k

∫
t/2<|y|≤t

|gk(x− Γ(y))|q |h(|y|)Ω(y)|
|y|n

dy
dt

t
f(x)dx

≤ (2‖h‖∆γ(R+)‖Ω‖L1(Sn−1))
q−1

×
∫
Rd

∑
k∈Z
|gk(x)|q

∫ 2k+1

2k

∫
t/2<|y|≤t

f(x+ Γ(y))
|h(|y|)Ω(y)|
|y|n

dy
dt

t
dx

≤ 2(2‖h‖∆γ(R+)‖Ω‖L1(Sn−1))
q−1

∫
Rd

(∑
k∈Z
|gk(x)|q

)
σ∗,1h,Ω,Γ(f̃)(−x)dx.

Since γ′ < (p/q)′ < ∞, then by Lemma 2.3 and Hölder’s inequality, we get
from (13) and (14) that∥∥∥(∑

k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|q

dt

t

)1/q∥∥∥q
Lp(Rd)

≤ 2(2‖h‖∆γ(R+)‖Ω‖L1(Sn−1))
q−1
∥∥∥(∑

k∈Z
|gk|q

)1/q∥∥∥q
Lp(Rd)
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× ‖σ∗,1h,Ω,Γ(f̃)(−·)‖L(p/q)′ (Rd)

≤ C(‖h‖∆γ(R+)‖Ω‖L1(Sn−1))
q
∥∥∥(∑

k∈Z
|gk|q

)1/q∥∥∥q
Lp(Rd)

.

This proves (7) for q < p < qγ and completes the proof. �

Lemma 2.5. Let 1 < q < ∞ and Γ be given as in Lemma 2.3. Suppose that
Ω ∈ L1(Sn−1) and h ∈ ∆γ(R+) for some γ ∈ [2,∞). Then∥∥∥(∑

k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|q

dt

t

)1/q∥∥∥
Lp(Rd)

(15)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rd)

holds, provided that one of the following conditions holds:
(i) 1 < p < q ≤ γ′;
(ii) γ′ < p <∞ and γ′ < q <∞.

Here the above constant C > 0 is independent of h, Ω, γ and the coefficients of
{Pj}dj=1.

Proof. This lemma will be proved by considering the following cases:
Case 1: (1 < p < q ≤ γ′). By the arguments same as those used in deriving

(8), there exist a nonnegative function u ∈ L(p′/q′)′(Rd) with ‖u‖L(p′/q′)′ (Rd) = 1

and functions {fk(x, t)} defined on Rd × R+ with

‖{fk(·, ·)}‖Lp′ (Rd,`q′ (Lq′ ([2k,2k+1],dt/t))) ≤ 1

such that ∥∥∥(∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|q

dt

t

)1/q∥∥∥
Lp(Rd)

(16)

≤
∥∥∥(∑

k∈Z
|gk|q

)1/q∥∥∥
Lp(Rd)

×
(∑
k∈Z

∫
Rd

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ f̃k(x, t)|q

′ dt

t
u(x)dx

)1/q′

.

By some changes of variables and Hölder’s inequality it holds that

|σh,Ω,Γ,t ∗ f̃k(x, t)|(17)

≤
∫
t/2<|y|≤t

|f̃k(x− Γ(y), t)| |h(|y|)Ω(y)|
|y|n

dy

=

∫ t

t/2

∫
Sn−1

|f̃k(x− Γ(ry′), t)||Ω(y′)|dσ(y′)|h(r)|dr
r

≤ C‖h‖∆q(R+)‖Ω‖
1/q
L1(Sn−1)
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×
(∫ t

t/2

∫
Sn−1

|f̃k(x− Γ(ry′), t)|q
′
|Ω(y′)|dσ(y′)

dr

r

)1/q′

= C‖h‖∆q(R+)‖Ω‖
1/q
L1(Sn−1)

(∫
t/2<|y|≤t

|f̃k(x− Γ(y), t)|q
′ |Ω(y)|
|y|n

dy
)1/q′

.

Note that 1 < (p′/q′)′ <∞. Invoking Lemma 2.3 and using (17) and Hölder’s
inequality, one finds that∫

t/2<|y|≤t
|f̃k(x− Γ(y), t)|q

′ |Ω(y)|
|y|n

dy

≤
∑
k∈Z

∫
Rd

∫ 2k+1

2k

∫
t/2<|y|≤t

|f̃k(x− Γ(y), t)|q
′ |Ω(y)|
|y|n

dy
dt

t
u(x)dx

≤
∫
Rd

∑
k∈Z

∫ 2k+1

2k
|fk(z, t)|q

′
∫
t/2<|y|≤t

u(Γ(y)− z) |Ω(y)|
|y|n

dydz
dt

t

≤
∫
Rd

(∑
k∈Z

∫ 2k+1

2k
|fk(z, t)|q

′ dt

t

)
σ∗,1Ω,Γ(ũ)(z)dz

≤ C
∥∥∥∑
k∈Z

∫ 2k+1

2k
|fk(·, t)|q

′ dt

t

∥∥∥
Lp′/q′ (Rd)

‖σ∗,1Ω,Γ(ũ)‖L(p′/q′)′ (Rd)

≤ C‖Ω‖L1(Sn−1),

which combining with (16) and the fact that ‖h‖∆q(R+) ≤ ‖h‖∆γ(R+) implies
that ∥∥∥(∑

k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|q

dt

t

)1/q∥∥∥
Lp(Rd)

(18)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rd)

.

This proves (15) for 1 < p < q ≤ γ′.
Case 2: (γ′ < p < ∞, γ′ < q < ∞). At first we shall prove the following

inequality

∥∥∥(∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|γ

′ dt

t

)1/γ′∥∥∥
Lp(Rd)

(19)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|γ

′
)1/γ′∥∥∥

Lp(Rd)

for 2 ≤ γ ≤ ∞.
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When γ = ∞. By duality, there exists a nonnegative function f ∈ Lp′(Rd)
with ‖f‖Lp′ (Rd) = 1 such that∥∥∥∑

k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|

dt

t

∥∥∥
Lp(Rd)

=

∫
Rd

∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|

dt

t
f(x)dx.

Invoking Lemma 2.3, we can get∥∥∥∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|

dt

t

∥∥∥
Lp(Rd)

≤
∫
Rd

∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|

dt

t
f(x)dx

≤
∫
Rd

∑
k∈Z
|gk(x)|

∫ 2k+1

2k
|σh,Ω,Γ,t| ∗ f̃(−x)

dt

t
dx

≤
∫
Rd

∑
k∈Z
|gk(x)|σ∗h,Ω,Γ(f̃)(−x)dx

≤
∥∥∥∑
k∈Z
|gk|
∥∥∥
Lp(Rd)

‖σ∗h,Ω,Γ(f̃)(−·)‖Lp′ (Rd)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥∑
k∈Z
|gk|
∥∥∥
Lp(Rd)

,

which yields (19) for γ =∞.
When 2 ≤ γ <∞. Since p/γ′ > 1, then by duality we can find a nonnegative

function f ∈ L(p/γ′)′(Rd) with ‖f‖L(p/γ′)′ (Rd) ≤ 1 such that∥∥∥(∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|γ

′ dt

t

)1/γ′∥∥∥γ′
Lp(Rd)

(20)

=

∫
Rd

∑
k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|γ

′ dt

t
f(x)dx.

By the arguments similar to those used to derive (17),

|σh,Ω,Γ,t ∗ gk(x)|

≤ C‖h‖∆γ(R+)‖Ω‖
1/γ
L1(Sn−1)

(∫
t/2<|y|≤t

|gk(x− Γ(y))|γ
′ |Ω(y)|
|y|n

dy
)1/γ′

,

which together with (20), the change of variables, Hölder’s inequality and
Lemma 2.3 leads to∥∥∥(∑

k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|γ

′ dt

t

)1/γ′∥∥∥γ′
Lp(Rd)
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≤ C‖h‖γ
′

∆γ(R+)‖Ω‖
γ′−1
L1(Sn−1)

∫
Rd

×
∑
k∈Z

∫ 2k+1

2k

∫
t/2<|y|≤t

|gk(x− Γ(y))|γ
′ |Ω(y)|
|y|n

dy
dt

t
f(x)dx

≤ C‖h‖γ
′

∆γ(R+)‖Ω‖
γ′−1
L1(Sn−1)

∫
Rd

∑
k∈Z
|gk(x)|γ

′
σ∗,1Ω,Γ(f̃)(−x)dx

≤ C‖h‖γ
′

∆γ(R+)‖Ω‖
γ′−1
L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|γ

′
)1/γ′∥∥∥γ′

Lp/γ′ (Rd)

× ‖σ∗,1Ω,Γ(f̃)(−·)‖L(p/γ′)′ (Rd)

≤ C‖h‖γ
′

∆γ(R+)‖Ω‖
γ′

L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|γ

′
)1/γ′∥∥∥γ′

Lp/γ′ (Rd)
.

This proves (19) for 2 ≤ γ <∞.
By a change of variable, we have that for any 1 < u, v <∞,∥∥∥(∑

k∈Z

∫ 2k+1

2k
|σh,Ω,Γ,t ∗ gk|u

dt

t

)1/u∥∥∥
Lv(Rd)

(21)

=
∥∥∥(∑

k∈Z

∫ 2

1

|σh,Ω,Γ,2kt ∗ gk|u
dt

t

)1/u∥∥∥
Lv(Rd)

.

In light of (19) and (21) we would have∥∥∥(∑
k∈Z

∫ 2

1

|σh,Ω,Γ,2kt ∗ gk|γ
′ dt

t

)1/γ′∥∥∥
Lp(Rd)

(22)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|γ

′
)1/γ′∥∥∥

Lp(Rd)
.

An application of Lemma 2.3 may yield that∥∥∥ sup
k∈Z

sup
t∈[1,2]

|σh,Ω,Γ,2kt ∗ gk|
∥∥∥
Lp(Rd)

(23)

≤
∥∥∥σ∗h,Ω,Γ( sup

k∈Z
|gk|
)∥∥∥

Lp(Rd)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥ sup
k∈Z
|gk|
∥∥∥
Lp(Rd)

.

By the interpolation between (22) and (23) one has∥∥∥(∑
k∈Z

∫ 2

1

|σh,Ω,Γ,2kt ∗ gk|q
dt

t

)1/q∥∥∥
Lp(Rd)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rd)

.
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This together with (21) yields (15) for γ′ < p < ∞ and γ′ < q < ∞. This
finishes the proof of Lemma 2.5. �

Lemma 2.6. Let 1 < q < ∞ and Γ be given as in Lemma 2.3. Suppose that
Ω ∈ L1(Sn−1) and h ∈ ∆γ(R+) for some γ ∈ [2,∞). Then for γ′ < p <∞ and
t ∈ [1, 2], it holds that∥∥∥(∑

k∈Z
|σh,Ω,Γ,2kt ∗ gk|q

)1/q∥∥∥
Lp(Rd)

(24)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rd)

.

The above constant C > 0 is independent of h, Ω, γ, t and the coefficients of
{Pj}dj=1.

Proof. By duality, there exists a nonnegative function u ∈ Lp′(Rd) with

‖h‖Lp′ (Rd) = 1

such that∥∥∥∑
k∈Z
|σh,Ω,Γ,2kt ∗ gk|

∥∥∥
Lp(Rd)

=

∫
Rd

∑
k∈Z
|σh,Ω,Γ,2kt ∗ gk(x)|u(x)dx(25)

≤
∫
Rd

∑
k∈Z
|gk(x)|σ∗h,Ω,Γ(ũ)(−x)dx

for all t ∈ [1, 2] and p ∈ (1,∞). By Lemma 2.3 and Hölder’s inequality, we get
from (25) that∥∥∥∑

k∈Z
|σΩ,Γ,2kt ∗ gk|

∥∥∥
Lp(Rd)

≤
∥∥∥∑
k∈Z
|gk|
∥∥∥
Lp(Rd)

‖σ∗h,Ω,Γ(ũ)(−·)‖Lp′ (Rd)(26)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥∑
k∈Z
|gk|
∥∥∥
Lp(Rd)

for all γ′ < p <∞. On the other hand, by the argument similar to those used
in deriving (23),

(27)
∥∥∥ sup
k∈Z
|σΩ,Γ,2kt ∗ gk|

∥∥∥
Lp(Rd)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥ sup
k∈Z
|gk|
∥∥∥
Lp(Rd)

for γ′ < p < ∞. Then (24) follows from an interpolation between (26) and
(27). �

We end this section by present the following lemma, which was proved in
[18].

Lemma 2.7 ([18]). For each k ∈ Z, define the multiplier operator Sk in Rn
by Skf(x) = Φk ∗ f(x). Here Φk is defined as in Lemma 2.2. Then
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(i) For 1 < p < q <∞ and 1 < r < p,∥∥∥(∑
k∈Z

∫ 2

1

∣∣∣∑
j∈Z

Sj−kgt,j,k

∣∣∣qdt)1/q∥∥∥
Lp(Rn)

≤ C
(∑
j∈Z

∥∥∥(∑
k∈Z

∫ 2

1

|gt,j,k|qdt
)1/q∥∥∥r

Lp(Rn)

)1/r

.

(ii) For 1 < q < p <∞ and 1 < r < p′,∥∥∥(∑
k∈Z

∫ 2

1

∣∣∣∑
j∈Z

Sj−kgt,j,k

∣∣∣qdt)1/q∥∥∥
Lp(Rn)

≤ C
(∑
j∈Z

(∫ 2

1

∥∥∥(∑
k∈Z
|gt,j,k|q

)1/q∥∥∥q
Lp(Rn)

dt
)r/q)1/r

.

3. Proofs of Theorems 1.2–1.4

This section is devoted to presenting Theorems 1.2–1.4. Let us begin with
proving Theorem 1.2.

Proof of Theorem 1.2. Let P be a real polynomial on R of degree N and satisfy

P (0) = 0. We may assume without loss of generality that P (t) =
∑N
i=1 bit

i

with each bi 6= 0. Let P0(t) = 0 and Pλ(t) =
∑λ
i=1 bit

i for λ ∈ {1, 2, . . . , N}.
For 0 ≤ λ ≤ N , we define the family of measures {τλk,t} by

τ̂λk,t(ξ) =
1

(2kt)ρ

∫
2k−1t<|y|≤2kt

e−2πiξ·Pλ(ϕ(|y|))y′ h(|y|)Ω(y)

|y|n−ρ
dy.

At first, one can easily check that for any λ ∈ {1, 2, . . . , N}, the following
estimates hold:

(28) τ̂0
k,t(ξ) = 0;

(29) |τ̂λk,t(ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1);

(30) |τ̂λk,t(ξ)− τ̂
λ−1
k,t (ξ)| ≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)ϕ(2kt)λ|bλξ|.

Also, by [17, Lemma 2.2] and the arguments similar to those used in deriving
[21, Lemma 2(ii)], one can get

(31) |τ̂λk,t(ξ)| ≤ C‖h‖∆γ(R+)(logϕ(2kt)λ|bλξ|)
− β

max{2,γ′} , if ϕ(2kt)λ|bλξ| > 1

for any λ ∈ {1, 2, . . . , N}. Here the above constants C > 0 are independent of
the coefficients of P .
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Now we choose a C∞0 (R) function ψ such that ψ(t) ≡ 1 for |t| ≤ 1/2 and
ψ(t) ≡ 0 for |t| > 1. For 1 ≤ λ ≤ N and ξ ∈ Rn, we define the family of
measures {νλk,t} by

(32) ν̂λk,t(ξ) = σ̂λk,t(ξ)

N∏
j=λ+1

ψ(ϕ(2kt)j |bjξ|)− σ̂λ−1
k,t (ξ)

N∏
j=λ

ψ(ϕ(2kt)j |bjξ|).

It follows from (29)–(31) that for any λ ∈ {1, 2, . . . , N},

(33) |ν̂λk,t(ξ)| ≤ C‖h‖∆γ(R+) min{1, ϕ(2kt)λ|bλξ|};

(34) |ν̂λk,t(ξ)| ≤ C‖h‖∆γ(R+)(logϕ(2kt)λ|bλξ|)
− β

max{2,γ′} , if ϕ(2kt)λ|bλξ| > 1.

Here the above constants C > 0 are independent of h and the coefficients of P .
Moreover, we get from (28) and (32) that

(35) τNk,t =

N∑
λ=1

νλk,t.

Here we use the convention Πj∈∅aj = 1. Invoking Lemma 2.4 and using the
change of variable, there exists C > 0 such that∥∥∥(∑

k∈Z

∫ 2

1

|τλk,t ∗ gk|qdt
)1/q∥∥∥

Lp(Rn)
(36)

≤ 2
∥∥∥(∑

k∈Z

∫ 2

1

|τλ0,2kt ∗ gk|
q dt

t

)1/q∥∥∥
Lp(Rn)

= 2
∥∥∥(∑

k∈Z

∫ 2k+1

2k
|τλ0,t ∗ gk|q

dt

t

)1/q∥∥∥
Lp(Rn)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rn)

for 1 < q < ∞ and (q′γ)′ < p < qγ, where the above constant C > 0 is
independent of h, Ω, γ and the coefficients of P . By (36) and the definition of
νλk,t, one can get ∥∥∥(∑

k∈Z

∫ 2

1

|νλk,t ∗ gk|qdt
)1/q∥∥∥

Lp(Rn)
(37)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rn)

for 1 < q < ∞ and (q′γ)′ < p < qγ, where the above constant C > 0 is
independent of h, Ω, γ and the coefficients of P .



ROUGH GENERALIZED PARAMETRIC MARCINKIEWICZ INTEGRALS 65

On the other hand, we get by Minkowski’s inequality and (35) that

Mq
h,Ω,P,ϕ,ρf(x) =

(∫ ∞
0

∣∣∣ 0∑
k=−∞

2kρτNk,t ∗ f(x)
∣∣∣q dt
t

)1/q

(38)

=
(∫ ∞

0

∣∣∣ 0∑
k=−∞

2kρτN0,t ∗ f(x)
∣∣∣q dt
t

)1/q

≤
0∑

k=−∞

2kς
(∑
k∈Z

∫ 2k+1

2k
|τN0,t ∗ f(x)|q dt

t

)1/q

≤ 1

1− 2−ς

(∑
k∈Z

∫ 2

1

|τNk,t ∗ f(x)|q dt
t

)1/q

≤ 1

1− 2−ς

N∑
λ=1

(∑
k∈Z

∫ 2

1

|νλk,t ∗ f(x)|qdt
)1/q

=:
1

1− 2−ς

N∑
λ=1

Tλ,qf(x).

Therefore, to prove Theorem 1.2, it suffices to show that there exists a constant
C > 0 independent of h, Ω, γ and the coefficients of P such that

(39) ‖Tλ,qf‖Lp(Rn) ≤ C‖h‖∆γ(R+)‖f‖Ḟ 0
p,q(Rn)

for any λ ∈ {1, 2, . . . , N}, 2β
2β−γ̃ < q < 2β

γ̃ and 1
qγ + γ̃

2βγ′ <
1
p <

1
qγ + 1

γ′ −
γ̃

2βγ′ .

Let Ψk,λ be defined by Ψk,λ(ξ) = Φk(ξ), where Φk is given as in Lemma 2.2
with ak = ϕ(2−k)−λ|bλ|−1. By the properties of ϕ we have

1 < Bλϕ ≤
ak+1

ak
≤ cλϕ for k ∈ Z.

This together with Lemma 2.2 yields that

(40)
∥∥∥(∑

k∈Z
|Ψk,λ ∗ f |q

)1/q∥∥∥
Lp(Rn)

∼ ‖f‖Ḟ 0
p,q(Rn)

for all 1 ≤ λ ≤ N and 1 < p, q < ∞. By Minkowski’s inequality and the
definition of Ψk,λ, we have

Tλ,qf(x) =
(∑
k∈Z

∫ 2

1

∣∣∣(νλk,t ∗Ψj−k,λ ∗ f)(x)
∣∣∣q dt
t

)1/q

(41)

≤
∑
j∈Z

(∑
k∈Z

∫ 2

1

∣∣∣(νλk,t ∗Ψj−k,λ ∗ f)(x)
∣∣∣q dt
t

)1/q

=:
∑
j∈Z

Iλ,j,qf(x).
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By (33), (34) and Plancherel’s theorem, we have

‖Iλ,j,2f‖2L2(Rn) =
∑
k∈Z

∫
Rn

∫ 2

1

|νλk,t ∗Ψj−k,λ ∗ f(x)|2dtdx(42)

≤
∑
k∈Z

∫
Ej−k

∫ 2

1

|ν̂λk,t(x)|2dt|f̂(x)|2dx

≤ C‖h‖2∆γ(R+)B
2
j

∑
k∈Z

∫
Ej−k

|f̂(x)|2dx

≤ C‖h‖2∆γ(R+)B
2
j ‖f‖2L2(Rn),

where Ej−k = {x ∈ Rn : ϕ(2k−j+1)−λ ≤ |bλx| ≤ ϕ(2k−j−1)−λ} and

Bj = |j|−
β

max{2,γ′}χ{j≥2}(j) +B−|j|λϕ χ{j≤1}(j).

Combining (42) with the fact that Ḟ 0
2,2(Rn) = L2(Rn) implies that

(43) ‖Iλ,j,2f‖L2(Rn) ≤ C‖h‖∆γ(R+)Bj‖f‖Ḟ 0
2,2(Rn).

By (37) and (40) we can get

(44) ‖Iλ,j,qf‖Lp(Rn) ≤ C‖h‖∆γ(R+)‖f‖Ḟ 0
p,q(Rn)

for 1 < q < ∞ and (q′γ)′ < p < qγ, where the above constant C > 0 is
independent of h, Ω, γ and the coefficients of P .

By interpolation between (43) and (44) we have that for β > γ̃, 2β
2β−γ̃ < q <

2β
γ̃ and 1

qγ + γ̃
2βγ′ <

1
p <

1
qγ + 1

γ′ −
γ̃

2βγ′ , there exist θ ∈ [0, 1], q1 ∈ (1,∞) and

p1 ∈ ((q′1γ)′, q1γ) such that

1

p
=
θ

2
+

1− θ
p1

,
1

q
=
θ

2
+

1− θ
q1

,
θβ

γ̃
> 1

and

(45) ‖Iλ,j,qf‖Lp(Rn) ≤ C‖h‖∆γ(R+)B
θ
j ‖f‖Ḟ 0

p,q(Rn).

Combining (45) with (41) leads to

‖Tλ,qf‖Lp(Rn) ≤ C‖h‖∆γ(R+)

∑
j∈Z

Bθj ‖f‖Ḟ 0
p,q(Rn) ≤ C‖h‖∆γ(R+)‖f‖Ḟ 0

p,q(Rn)

for any β > γ̃, 2β
2β−γ̃ < q < 2β

γ̃ and 1
qγ + γ̃

2βγ′ <
1
p <

1
qγ + 1

γ′ −
γ̃

2βγ′ . This gives

(39). �

Proof of Theorem 1.3. By (38), to prove Theorem 1.3, it suffices to show that
there exists a constant C > 0 independent of h, Ω, γ and the coefficients of P
such that

(46) ‖Tλ,qf‖Lp(Rn) ≤ C‖h‖∆γ(R+)‖f‖Ḟ 0
p,q(Rn)

for (p, q) ∈ ( βγ′

β+γ′−2 , β)2 or β
β−1 < p < q ≤ 2.
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By Lemma 2.5 and the arguments similar to those used to derive (36), there
exists C > 0 independent of h, Ω, γ and the coefficients of P such that∥∥∥(∑

k∈Z

∫ 2

1

|τλk,t ∗ gk|qdt
)1/q∥∥∥

Lp(Rn)
(47)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rn)

for 1 < p < q ≤ γ′ or γ′ < p, q <∞. By (47) and the definition of νλk,t, it holds
that ∥∥∥(∑

k∈Z

∫ 2

1

|νλk,t ∗ gk|qdt
)1/q∥∥∥

Lp(Rn)
(48)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rn)

for 1 < p < q ≤ γ′ or γ′ < p, q < ∞. Here the above constant C > 0 is
independent of h, Ω, γ and the coefficients of P . By (48) and (40) we can get

(49) ‖Iλ,j,qf‖Lp(Rn) ≤ C‖h‖∆γ(R+)‖f‖Ḟ 0
p,q(Rn)

for γ′ < p, q < ∞ or 1 < p < q ≤ γ′, where the above constant C > 0 is
independent of h, Ω, γ and the coefficients of P .

By interpolation between (43) and (49) we have that for any p ∈ ( βγ′

β+γ′−2 , β)

and q ∈ ( βγ′

β+γ′−2 , β), there exist θ ∈ ( 2
β , 1] and p1 ∈ (γ′,∞) and q1 ∈ (γ′,∞)

such that
1

p
=
θ

2
+

1− θ
p1

,
1

q
=
θ

2
+

1− θ
q1

,
θβ

2
> 1

and

(50) ‖Iλ,j,qf‖Lp(Rn) ≤ C‖h‖∆γ(R+)B
θ
j ‖f‖Ḟ 0

p,q(Rn).

Combining (50) with (41) leads to (46) for (p, q) ∈ ( βγ′

β+γ′−2 , β)2.

By interpolation between (43) and (49) again we have that for any pair (p, q)

with β
β−1 < p < q ≤ 2 and β > 2, there exist θ ∈ ( 2

β , 1] and 1 < p1 < q1 ≤ γ′

such that
1

p
=
θ

2
+

1− θ
p1

,
1

q
=
θ

2
+

1− θ
q1

,
θβ

2
> 1

and

(51) ‖Iλ,j,qf‖Lp(Rn) ≤ C‖h‖∆γ(R+)B
θ
j ‖f‖Ḟ 0

p,q(Rn).

Inequality (51) together with (41) leads to (46) for β
β−1 < p < q ≤ 2 and

β > 2. �
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Proof of Theorem 1.4. By (38), to prove Theorem 1.4, it suffices to show that
there exists a constant C > 0, which is independent of h and the coefficients of
P , such that

(52) ‖Tλ,qf‖Lp(Rn) ≤ C‖h‖∆γ(R+)‖f‖Ḟ 0
p,q(Rn)

for any λ ∈ {1, 2, . . . , N}, provided that one of the following conditions holds:

(i) q ∈ (γ
′(β−1)+2

β , γ′(β − 1) + 2), p ∈ (γ
′(β−1)+2

β , 2] and p < q;

(ii) q ∈ (β+1
β , β + 1), p ∈ (2, β + 1) and p > q;

(iii) q ∈ (γ
′(β−1)+2

β , β + 1) and p = q.

We now prove (52) by considering the following cases:
Case 1: Proof of (52) for the case (i). For 1 ≤ λ ≤ N , we define the

multiplier operator Sk,λ in Rn by

Sk,λf(x) = Ψk,λ ∗ f(x),

where the functions Ψk,λ are given as in the proof of Theorem 1.2.
By the definition of Ψk,λ, we can write

(53) Tλ,qf(x) =
(∑
k∈Z

∫ 2

1

∣∣∣∑
j∈Z

Sj−k,λ(νλk,t ∗Ψj−k,λ ∗ f)(x)
∣∣∣q dt
t

)1/q

.

By Lemma 2.7(i) and (53) we can get

‖Tλ,qf‖Lp(Rn)(54)

≤ C
(∑
j∈Z

∥∥∥(∑
k∈Z

∫ 2

1

|νλk,t ∗Ψj−k,λ ∗ f(x)|qdt
)1/q∥∥∥r

Lp(Rn)

)1/r

≤ C
(∑
j∈Z
‖Iλ,j,qf‖rLp(Rn)

)1/r

for 1 < r < p < q <∞, where Iλ,j,q is given as in (41).

By interpolation between (43) and (49), for q ∈ (γ
′(β−1)+2

β , γ′(β−1)+2) and

p ∈ (γ
′(β−1)+2

β , 2], there exist p1 ∈ (γ′,∞), q1 ∈ (γ′,∞) and θ ∈ ( 2
γ′(β−1)+2 , 1]

such that
1

p
=
θ

2
+

1− θ
p1

,
1

q
=
θ

2
+

1− θ
q1

and

(55) ‖Iλ,j,qf‖Lp(Rn) ≤ C‖h‖∆γ(R+)B
θ
j ‖f‖Ḟ 0

p,q(Rn).

Fix q ∈ (γ
′(β−1)+2

β , γ′(β − 1) + 2) and p ∈ (γ
′(β−1)+2

β , 2] such that p < q, we

can choose 1 < r < p such that rθβ
2 > 1. Therefore, it follows from (55) that

‖Tλf‖Lp(Rn) ≤ C‖h‖∆γ(R+)

(∑
j∈Z

Bθrj

)1/r

‖f‖Ḟ 0
p,q(Rn) ≤ C‖f‖Ḟ 0

p,q(Rn)
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for q ∈ (γ
′(β−1)+2

β , γ′(β − 1) + 2) and p ∈ (γ
′(β−1)+2

β , 2] such that p < q. This

proves (52) for the case (i).
Case 2: Proof of (52) for the case (ii). By Lemma 2.7(ii) and (53), we have

‖Tλf‖Lp(Rn)(56)

≤ C
(∑
j∈Z

(∫ 2

1

∥∥∥(∑
k∈Z
|νλk,t ∗Ψj−k,λ ∗ f(x)|q

)1/q∥∥∥q
Lp(Rn)

dt
)r/q)1/r

≤ C
(∑
j∈Z

(∫ 2

1

‖Jλ,j,q,tf‖qLp(Rn)dt
)r/q)1/r

≤ C
(∑
j∈Z

(
sup
t∈[1,2]

‖Jλ,j,q,tf‖Lp(Rn)

)r)1/r

for any r ∈ (1, p′) and p > q, where

Jλ,j,q,tf(x) =
(∑
k∈Z
|νλk,t ∗Ψj−k,λ ∗ f(x)|q

)1/q

.

Fix t ∈ [1, 2]. By Lemma 2.6 and the definition of νk,t, it holds that∥∥∥(∑
k∈Z
|νλk,t ∗ gk|q

)1/q∥∥∥
Lp(Rn)

(57)

≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)

∥∥∥(∑
k∈Z
|gk|q

)1/q∥∥∥
Lp(Rn)

for γ′ < p <∞ and 1 < q <∞. In light of (57) and (40) we would have

(58) ‖Jλ,j,q,tf‖Lp(Rn) ≤ C‖h‖∆γ(R+)‖Ω‖L1(Sn−1)‖f‖Ḟ 0
p,q(Rn)

for γ′ < p < ∞ and 1 < q < ∞. Similar arguments to those used in getting
(43) may yield

(59) ‖Jλ,j,2,tf‖L2(Rn) ≤ C‖h‖∆γ(R+)Bj‖f‖Ḟ 0
2,2(Rn).

By interpolating between (58) and (59), for fixed p ∈ (2, β + 1) and q ∈
(β+1
β , β+1), we can choose r ∈ (1, p′), p1 ∈ (γ′,∞), q1 ∈ (1,∞) and δ ∈ ( 2

β+1 , 1)

such that rδβ
2 > 1, 1

p = δ
2 + 1−δ

p1
, 1
q = δ

2 + 1−δ
q1

and

(60) ‖Jλ,j,q,tf‖Lp(Rn) ≤ C‖h‖∆γ(R+)B
δ
j ‖f‖Ḟ 0

p,q(Rn).

Here C > 0 is independent of t and the coefficients of P . It follows from (56)
and (60) that

‖Tλf‖Lp(Rn) ≤ C‖h‖∆γ(R+)

(∑
j∈Z

Bδrj

)1/r

‖f‖Ḟ 0
p,q(Rn)(61)

≤ C‖h‖∆γ(R+)‖f‖Ḟ 0
p,q(Rn).

This proves (52) for the case (ii).
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Case 3: Proof of (52) for the case (iii). Notice that γ′(β − 1) + 2 > β + 1.
Then the case p = q follows easily from the interpolation between Case 1 and
Case 2. This completes the proof of Theorem 1.4. �

4. Addition results

In this section we shall present some new results for the parametric Marcink-
iewicz integral operators related to the Littlewood-Paley g∗λ-function and the
area integral S, which are respectively defined by

M λ,q,∗
h,Ω,PN ,ϕ,ρ

f(x) :=
(∫∫

Rn+1
+

( t

t+ |x− y|

)nλ
×
∣∣∣ 1

tρ

∫
|y|≤t

h(|y|)Ω(y′)

|y|n−ρ
f(x− P (ϕ(|y|))y′)dy

∣∣∣q dydt
tn+1

)1/q

,

where λ > 0 and Rn+1
+ = Rn × (0,∞);

M q
h,Ω,PN ,ϕ,ρ,S

f(x)

:=
(∫∫

Γ(x)

∣∣∣ 1

tρ

∫
|y|≤t

h(|y|)Ω(y′)

|y|n−ρ
f(x− P (ϕ(|y|))y′)dy

∣∣∣q dydt
tn+1

)1/q

,

where Γ(x) = {(y, t) ∈ Rn+1
+ : |x− y| < t} and h, Ω, P, ϕ, ρ be given as in (2).

Before presenting our main results, let us introduce the following lemma,
which follows from [19].

Lemma 4.1. Let λ > 1 and 1 < q <∞. Then there exists a constant Cn,λ > 0
such that for any nonnegative locally integrable function g on Rn,∫

Rn
(M λ,q,∗

h,Ω,PN ,ϕ,ρ
f(x))qg(x)dx ≤ Cn,λ

∫
Rn

(Mq
h,Ω,PN ,ϕ,ρ

f(x))qM(g)(x)dx,

where M is the usual Hardy-Littlewood maximal operator on Rn.

As applications of Theorems 1.2–1.4, we can get:

Theorem 4.2. Let P be a real polynomial on R of degree N and satisfy P (0) =
0 and ϕ ∈ F. Let Ω satisfy (1) and 1 < q <∞.

(i) If h ∈ ∆γ(R+) for some γ ∈ (1,∞] and Ω ∈ WFβ(Sn−1) for some

β > γ̃. Then for any 2β
2β−γ̃ < q < 2β

γ̃ and 1
qγ + γ̃

2βγ′ <
1
p ≤

1
q , we have

‖M λ,q,∗
h,Ω,P,ϕ,ρf‖Lp(Rn) ≤ Cp‖h‖∆γ(R+)‖f‖Ḟ 0

p,q(Rn).

(ii) If h ∈ ∆γ(R+) for some γ ∈ [2,∞] and Ω ∈ WFβ(Sn−1) for some

β > 2. Then for βγ′

β+γ′−2 < q ≤ p < β, we have

‖M λ,q,∗
h,Ω,P,ϕ,ρf‖Lp(Rn) ≤ Cp‖h‖∆γ(R+)‖f‖Ḟ 0

p,q(Rn).
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(iii) If h ∈ ∆γ(R+) for some γ ∈ [2,∞] and Ω ∈ WFβ(Sn−1) for some
β > 1. Then

‖M λ,q,∗
h,Ω,P,ϕ,ρf‖Lp(Rn) ≤ Cp‖h‖∆γ(R+)‖f‖Lp(Rn)

provided that one of the following conditions holds:
(a) q ∈ (β+1

β , β + 1), p ∈ (2, β + 1) and p > q;

(b) q ∈ (γ
′(β−1)+2

β , β + 1) and p = q.

Here the above constants Cp > 0 are independent of h and the coefficients of P ,
but may depend on p, q, n, λ, ϕ, ρ,N . The same results hold for Mq

h,Ω,P,ϕ,ρ,S.

Proof. Fix 1 < q ≤ p < ∞. By the duality, Lp bounds for M , Hölder’s
inequality and Lemma 4.1, one has

‖M λ,q,∗
h,Ω,P,ϕ,ρf‖

q
Lp(Rn)

= sup
‖g‖

L(p/q)′ (Rn)
≤1

∫
Rn

(M λ,q,∗
h,Ω,P,ϕ,ρf(x))qg(x)dx

≤ Cn,λ sup
‖g‖

L(p/q)′ (Rn)
≤1

∫
Rn

(Mq
h,Ω,P,ϕ,ρf(x))qM(g)(x)dx

≤ Cn,λ,p,q‖Mq
h,Ω,P,ϕ,ρf‖

q
Lp(Rn).

Combining this with Theorems 1.2–1.4 implies the conclusions of Theorem 4.2

for M λ,q,∗
h,Ω,P,ϕ,ρ.

On the other hand, one can easily check that

M q
h,Ω,P,ϕ,ρ,Sf(x) ≤ 2nλ/qM λ,q,∗

h,Ω,P,ϕ,ρf(x),

which together with the bounds for M λ,q,∗
h,Ω,P,ϕ,ρ implies the bounds for

M q
h,Ω,P,ϕ,ρ,S . �
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