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ON CERTAIN ESTIMATES FOR ROUGH GENERALIZED
PARAMETRIC MARCINKIEWICZ INTEGRALS

DAIQING ZHANG

ABSTRACT. This paper is devoted to establishing certain LP bounds for
the generalized parametric Marcinkiewicz integral operators associated to
surfaces generated by polynomial compound mappings with rough ker-
nels given by h € Ay(Ry) and Q@ € WFg(S™~1) for some v, 8 € (1,00].
As applications, the corresponding results for the generalized paramet-
ric Marcinkiewicz integral operators related to the Littlewood-Paley g}
functions and area integrals are also presented.

1. Introduction

The main motivation of this paper is to establish some new results con-
cerning rough generalized parametric Marcinkiewicz integrals. To be more
precise, we shall establish certain LP bounds for rough generalized parametric
Marcinkiewicz integrals along polynomial compound curves under some pretty
much weaker size conditions assumed on the integral kernels both on the unit
sphere and in the radial directions.

Throughout this paper, let R™ (n > 2) be the n-dimensional Euclidean space
and S”~! denote the unit sphere in R™ equipped with the induced Lebesgue
measure do. For y € R™\ {0}, we set ¥’ = y/|y|. Let T'p, = {P(e(|y]))y :y €
R™} be the polynomial compound curves generated by a continuous function
¢ : [0,00) = R and a real polynomial P on R satisfying P(0) = 0. Assume
that Q € L'(S"71) is a function of homogeneous degree zero and satisfies

(1) /SW1 Qu)do(u) = 0.

Let 1 < ¢ < oo and h be a measurable function on R, := [0, 00), the general-
ized parametric Marcinkiewicz integral operators along polynomial compound
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q
curves My g p o.p ATE defined by

@ M, =[] / (2= P((y)y) <||y||g Lo

where p = ¢+ i7 (¢,7 € R with ¢ > 0) and f € .Z(R™) (the space of Schwartz
functions on R™).

For the sake of simplicity, we denote 9} o p, , = MY p, , when h = 1.
When ¢(t) =t and P(t) = t, we denote M} ¢, p =M} o and MG p =
MY, ,- We also denote M} o p, , = M0, Ppps M o, = M0, and MG | =
Mq,, when ¢ = 2.

When p = 1, the operator Mg , reduces to the well-known Marcinkiewicz
integral operator Mg, which was originally introduced by Stein [23] who proved
that 9 is bounded on LP(R™) for 1 < p < 2 if Q € Lip,(S"7!) for 0 <
a < 1. Subsequently, Benedek et al. [5] improved the condition on rough
kernel Q to Q € C}(S"7!) and extended the above range on index p to 1 <
p < oo. Since then, a considerable amount of attentions has been given to
study Marcinkiewicz integrals, successfully extending the above results to more
rough kernels. For example, see [8,9] for the case Q € H'(S"~!) (the Hardy
space on S”71), [3,4] for the case Q € L(log L)*/?(S*1), [3,10] for the case
Qe B,(,O’_l/Q)(Snfl) (the block space generated by r-blocks), [6,24] for the
case Q € F3(S" 1) (the Grafakos-Stefanov class). When p # 1, the operator
Ma,, is just the classical parametric Marcinkiewicz integral operator .#q ,.
Hoérmander [14] (resp., Sakamoto and Yabuta [22]) first studied the LP bounds
for Mq , with real (resp., complex) number p. Later on, the above results were
improved and generalized by many authors (see [17,21,24] for example).

On the other hand, the investigation on the generalized Marcinkiewicz inte-
gral operator has also attracted the attention of many authors. When p = 1,
we denote MY, = ME,. The operator M, was first investigated by Chen,
Fan and Ying [7] who obtained that 9, is bounded from the homogeneous
Triebel-Lizorkin space Fg,q(R") to LP(R™) for 1 < p, ¢ < oo under the con-
ditions that Q € L#(S"™!) for some s € (1,00]. The above result was later
improved by Fan and Wu [12] to the case Q € L(logL)Y/9(S"~1) for ¢ > 2
and Q € L(log L)Y/a+¢(S"~1) for 1 < ¢ < 2 and any ¢ > 0. Meanwhile,
Al-Qassem et al. [1] established the bounds of MY, : ng(R") — LP(R™) for
p € (28/(28 —1),28) and q € (268/(28 — 1),28) provided that Q € Fz(S"~1)
for some 8 > 1. Recently, Liu [18] improved and generalized the result of [1].
We now introduce the main result of [18] as follows:

Theorem A ([18]). Let P be a real polynomial on R of degree N and satisfy
P(0) =0 and p € §. HereF is the set of all functions ¢ satisfying the following
conditions:

(a) ¢ is a positive increasing C*((0,00)) function such that t°¢'(t) is mono-
tonic on Ry for some § € R;
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(b) there exist Cy, cyp > 0 such that t¢'(t) > Cuo(t) and ¢(2t) < cyd(t) for
allt > 0.

Assume that h =1 and Q € Fz(S" 1) for some > 1/2 and satisfying (1).
Then

||mZ,Q,P,<p,pf||LP(R") < Cpr”ngq(Rn)

forp € (2221,1 +28) and q € (2§§1,1 + 28). Here the constant Cp, > 0 is
independent of the coefficients of P, but may depend on p,q,n,p, p, N.

For the generalized Marcinkiewicz integral operator with radial kernel h, Le
[15] observed that M , is bounded from F)) (R™) to LP(R") for 1 < p,q < o0,
provided that k € A2 43 (R4) and Q € L(log L)(S" ). Here A, (R4) (1 <
v < o0) is the collection of all measurable functions h : [0, 00) — R satisfying

1 /B 1/v
h = — h(t)|["dt .
Ihlla, e = sup (3 [ rar) < oo

It is easy to see that A, (R4) enjoys the properties that L (Ry) = A (Ry),
AL, (Ry) € AL (Ry) for 49 > 1 > 0. Recently, Al-Qassem et al. [2] improved
the main results of [12,15] to more weaker size conditions on h. Very recently,
Liu et al. [19] extended the main results of [2] to the generalized Marcinkiewicz
integral operator along polynomial compound curves. Partial results of [19] can
be formulated as follows:

Theorem B ([19]). Let P be a real polynomial on R of degree N and satisfy
P(0)=0and ¢ € §. Let 1 < ¢ < 00, h € Ay (Ry) for some v € (2,00] and
Qe Llog )2(sm=1yu (U BV V(sn1)) satisfying (1). Then

r>1

190, 0, pppf 1 Lp @) < Collhlla, @) I 5o @y

forl<p<gqgif2<y<ooandq >, and fory <p < o0 if 2 <y < 0
and ¢ < . Here the above constants C, > 0 are independent of h and the
coefficients of P.

Remark 1.1. For the class §, there are some model examples such as t* (« > 0),
t#In(1+¢) (B > 1), tlnln(e +t), real-valued polynomials P on R with positive
coefficients and P(0) = 0 and so on. Note that there exists B, > 1 such that
©(2t) > Byp(t) for any ¢ € § (see [17]).

In this paper we focus on the generalized parametric Marcinkiewicz integrals
EDTZ’Q’PMP with rough kernels h € A, (R,) for some vy > 1 and Q € WFz(S" 1)
for some 8 > 0, where the function class W F3(S"~!) for 8 > 0 is the set of all
LY (S"~1) functions Q which satisfy

/ B L ’
ges;gl //S"—le"—l |2(6)2(u")|log =) '§|da(9)do(u) < 0.
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We would like to point out that the class W F5(S"~!) was originally introduced
by Fan and Sato [11] in more general form. It is closely related to the Grafakos—
Stefanov function class F5(S™ '), which was introduced in [13] and is given by

Fa(sm )= {neris )

/ B 2

S o, PO
In 2009, Fan and Sato [11] first studied the LP boundedness for the singular
integrals with rough kernels h € A,(R;) and 2 € WFz(S"~!). Later on, a
considerable amount of attention has been given to investigate the boundedness
for various kinds of integral operators under the same conditions on rough
kernels. For examples, see [16,20] for singular integral operators, [21,25] for
Marcinkiewicz integral operators. Particularly, it was shown in [21] that:

do(y') < oo} for 5 > 0.

Theorem C ([21]). Let P be a real polynomial on R of degree N and satisfy
P0)=0andp €F. Leth € A, (Ry) for some~ € (1,00] and 2 € WFz(S" 1)
for some B > 1 max{2,7'} satisfying (1). Then

19h.9,P0p0f | Lo@n) < Cpll FllLrm)
for |% -3l < min{%, 31— ﬁmin{% + 1,1}. Here the constant C, > 0 is
independent of the coefficients of P.

It was shown in [11,16] that
F5(SY) ¢ WFs(SY) and WFys(S" 1)\ Fs(S™ 1) # 0 for B > 0;
U L7(s"") € F,(S"7") € F, (8" for 0< By < B < oo

r>1

JL7(8™™") c WFs,(S"™") C WFp,(S™1) for 0< By < B < oc.
r>1
Moreover, the following inclusion relations are valid:

L"(S" 1) € L(log L)? (S 1) € L(log L)?2(S"~!) for r > 1 and 0 < By < f1;
L(log L)*(S"~") ¢ H'(S"™") for 8> 1;
L(log L)?(S"~1) ¢ HY(S"™ ) ¢ L(log L) (S"71) for 0 < B < 1;
JLasm ) ¢ () Fs(s™ ) & Llog L(S™);

q>1 B>1
() Fe(s" ) g HY(S") ¢ [ Fa(s™ )
B>1 B>1
U L' (s 4 ¢ Béo’”)(Sn_l) for ¢ > 1 and v > —1;
r>1

Béo’”)(snfl) - Béo’vl)(Snfl) for ¢ > 1 and vy > v1 > —1;

U Béo’”)(Sn_l) ¢ U L"(S™ Y for v > —1;

q>1 r>1
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0, -1 1iqn-1 1+v/qn—1
Blg Sy ¢ HY(S" Y + Llog L)V (8™ L) forg>1, v > —1.

Based on the above, a question that arises naturally is the following.

Question. Is the operator m(fluﬂ,P,cp,p with ¢ # 2 bounded from ng(R”) to
L?(R™) under the same conditions h, 2, P, ¢ in Theorem C?

The main motivation of this paper is to answer the above question. Our
main results can be listed as follows:

Theorem 1.2. Let P be a real polynomial on R of degree N and satisfy
P(0) = 0 and ¢ € §. Assume that h € Ay(Ry) for some v € (1,00] and
Q € WFs(S"™1Y) for some B > 7 satisfying (1). Here ¥ = max{2,7'}. Then
for any 25257 <q<% and%—i—w:g, <%<%+$—%¢, it holds that

199 g g 10y < Collblla 1 Fllg oo
Here the constant Cp, > 0 is independent of h and the coefficients of P, but
may depend on p, d, N, ¢.
Theorem 1.3. Let P be a real polynomial on R of degree N and satisfy
P(0) = 0 and ¢ € §. Assume that h € A(Ry) for some v € [2,00] and
Q € WF5(S™™1) for some B > 2 satisfying (1). Then for (p, q) € (4ﬁf$'7275)2

or % <p<q<2,itholds that

HmZ,Q,P,%pf”LP(R") < OP”hHAw(R+)”fHFI?,q(R”)‘

Here the constant Cp, > 0 is independent of h and the coefficients of P, but
may depend on p, d, N, ¢.

Theorem 1.4. Let P be a real polynomial on R of degree N and satisfy
P(0) = 0 and ¢ € §. Assume that h € Ay(Ry) for some v € [2,00] and
Q€ WF5(S"™1) for some B> 1 satisfying (1). Then

190 2, ppof Lo @) < Collhlla, @) Il 2o, @y
provided that one of the following conditions holds:
(i) g e (P2 y(B—1)+2), pe (L2 9] and p < g;
(i) g€ (5, 8+1), pe (2,8+1) andp > g;
(iii) ¢ € (FEFHE2 B4 1) and p = g.
Here the constant Cp, > 0 is independent of h and the coefficients of P, but
may depend on p, d, N, ¢.

Remark 1.5. There are some remarks as follows:

(i) By the fact that F5(S') € WFs(S!) for 3 > 0, we know that our main
results also hold if the condition Q € W F3(S"~!) replacing by Q € W Fz(S"~1)
when n = 2.

(ii) Our main results are new even in the special case P(t) = ¢(t) = ¢ and

p=1
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The rest of this paper will be organized as follows. Section 2 contains some
preliminary notations and lemmas, which are the main ingredients of our proofs
of main results. The proofs of Theorems 1.2-1.4 will be given in Section 3.
Finally, we establish the LP bounds for generalized parametric Marcinkiewicz
integral operators related to Littlewood-Paley g3-functions and area integrals
in Section 4. We remark that the proofs of Theorems 1.2-1.4 are motivated by
[18,19,21].

Throughout this paper, the letter C' will stand for positive constants not
necessarily the same one at each occurrence but is independent of the essential
variables. Especially, the letter C,, g denote the positive constants that depend
on the parameters a, (.

2. Preliminary notations and lemmas
Let us begin with the definition of the homogeneous Triebel-Lizorkin spaces.

Definition (homogeneous Triebel-Lizorkin spaces). Let S’'(R™) be the tem-
pered distribution class on R™. For « € R and 0 < p, ¢ < oo (p # o0), the
homogeneous Triebel-Lizorkin spaces Fy, (R") is defined by

£ R ={ 1 € S @) [ Fly, oy = | (270100 110) |
i€EZL

< oo},
Lp(R™)

where @(f) = ¢(2€) for i € Z and ¢ € C°(R"™) satisfies the conditions:
0 < ¢(x) < 1; supp(¢p) C {z € R" : 1/2 < |z| < 2}; é(x) > ¢ > 0 if
3/5 < |o[ < 5/3; X e (29€) = 1 for € 0.

Remark 2.1. Tt is well-known that S(R™) is dense in Fﬁq(R") and also the
following hold:

(i) F)o(R™) = LP(R™) for 1 < p < oc;

(ii) (E;q(R"))* :.Fp—,g, (R") for a € R and 1 < p, ¢ < o0;

(iii) F¢, (R™") Cc B2 (R™) for a € R, 0 < p < o0 and ¢; < go.

p,q1 Pp,q2

Let {ax} be a lacunary sequence with satisfying infyeyz HZ% >a > 1. Let
no € C®(R) be an even function satisfying 0 < no(t) < 1, 79(0) = 1 and
no(t) = 0 for [¢t| > 1. Set n(§) =1 for |£| < 1, n(¢) = no(lgl:ll), where a > 1.

Then, 1 satisfies yj¢<1(€) < 7(€) < Xj¢<a(€) and [9°7(€)] < ca(a — 1)712! for
€ € R" and o € N%, where ¢, is independent of a. We define functions {Vr}k
on R" by

Ui(€) = nai;16) — nla;'€), € €R™

It is easy to see that the function v enjoys the following properties:
supp(vr) C {ar < [¢] < aagq1}; supp () Nsupp(yh;) =0 for [j — k[ = 2;
ST Gk(€) = 1 for € € R\ {0},

kEZ
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The following is a well-known characterization of homogeneous Triebel-
Lizorkin spaces, which plays a key role in our proofs.

Lemma 2.2 ([25]). Let {a;}rez be a lacunary sequence of positive numbers
with 1 < a < “ < b for all k € Z. Let @y be defined on R™ by O (&) = Pr(€)
and <y, denote the set of all polynomials on R™. Let 1 < p, ¢ < oo and a € R.
For f € S(R™)/ o, we define the norm ||fHF(, ({Bx}renrn) OY

1 s, (@0prcaim = H(Zam@k*ﬂ) ’

Then Hf”F,ﬁiq({fbk}kez,R") is equivalent to ||f||F§q(Rn).

Lr(R")

Let h,, p be given as in (2) and T': R® — R? (d > 1) be a mapping. We
define the family of measures {0}, o r}t>0 on R? as follows:

_— 1 h
®) drara) =g [ emerw MBI,
/2<|y|<t |y~

The related maximal operator o}, (, - is defined by

o ar(f)(@) = sup |lon.ar.el * f(z)

)

where |op, 14| is defined in the same way as o, o r ¢, but with Q and h replaced
by |2 and |h|, respectively.

In what follows, for the sake of simplicity, we denote U,*L’Sl2 r = 0hqr When
p=1and 05‘} = 0'27512 r when h = 1. In addition, for any arbitrary functions
f:R" > Rand g : R* x Ry — R, we define the function f :R” - R and
G:R" xRy —» Rby f(z) = f(—=) and §(x,t) = g(—=,t) for all x € R™ and
teRy.

Lemma 2.3. Let ¢ € § and I'(y) = P(p(lyl)y’), where P = (Pi, Ps,..., Py)
with each Pj being a real-valued polynomial on R™. Suppose that Q € L'(S"~1)
and h € Ay (Ry) for some 1 < v < oco. Then for v < p < oo, there exists a
constant C' > 0 such that

(4) o a0 (Hllze@ey < Cliklla, @ 1L s 1 fll e @)

Here the above constant C' > 0 is independent of h, 2, v and the coefficients of
{Pj}?zl, but depend on ¢ and p.

Proof. By a change of variable and Hélder’s inequality one finds

|lon,a,rl * f(z)]

/ / V)llf(x — Py ) o) h(r)
t/2 Jgn-1 .

2||h||AW(R+>(/t/2 /SH Q@)1 f(x = P(p(r)y))ldo(y’)

IN

IN

v dr)l/v’

r
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< 2l e 1201 g0

//2/3“ [N =Pl (T)y’))IW'da(y’)%)lw.

It follows that
(5) oha,r(f)(@)
< 2||h||A (R+)||Q||L1(sn 1)

! rdr
([ 10w (s [ 15 = P )T ) dotw)
gn-1 >0 Ji/2 r
It was shown in the proof of [18, Lemma 3.1] that

©) | sup / 1= Pl

t>0 Jt/2 r

1/

Lo < Cllfller(ray

for all ¥ < p < oo. Here the constant C' > 0 is independent of y’ and the
coefficients of {P;}4_,, but may depend on ¢, p. By (5), (6) and Minkowski’s
inequality it holds that

loh.or(Nllce@ay < CllRlla, @) 12z -2 1 fll Lo (ra)
for v/ < p < co. This proves (4). O

As several applications of Lemma 2.3, we can obtain the following lemmas,
which play key roles in the proofs of main results.

Lemma 2.4. Let 1 < ¢ < oo and ' be given as in Lemma 2.3. Suppose that
Qe LYS" ) and h € A, (Ry) for some v € (1,00]. Then for (¢'v) < p < q7,
it holds that

™ I Z/ Cimarcal®) ]
(Sl

kEeZ

Here the above constant C' > 0 is independent of h, ),y and the coefficients of
{Pj}ff:l, but may depend on ¢ and p.

< Clhlla, @) 120 L1 g1y

LP(Rd

Proof. For a fixed 1 < g < oo and let us consider the following cases:
Case 1: ((¢'7)’ < p < ¢). By duality, there exists a sequence of functions

{f(z, 1)} defined on R? x Ry with [[{ (-, )} o' (ra ea’ (r (20 25+1] i /0y)) < 1

such that
~ /dt
HZ/ omaa e oDl
2k+1

Z/Rd /Zk o, * fi(z, t)l ( Ydz.

keZ

L' /d (R4)
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By Holder’s inequality one finds that
2k+1 dt
/ Z/ OhQT,t *gk(ﬂf)fk(xat)7dx
RY ez /2"
ok+1

5 dt
[ 0@ [ onores filwn)Fda
R ok t

keZ
1/q 2kt ~ rdt l/q/
< q) * (-, )9 — .
< H(Z|gk| Lozt Z/Qk lonare* fi(t)] | P
kEZ kEZ

Noting that p’/q’ > 1, by duality again there exists a nonnegative function
uwe LW/ (RY) with l[ull o sary gy = 1 such that

2k+1
~ dt
IS [ o= o s
kez /2"

Lp’/q'(]Rd)
2k’+1 5 q/ dt
= Z lonare* fr(z, t)]? —u(z)de.
ke R4 J2k t
Hence, we can get
ok+1
dt\1/q
. (=) ey
(8) kez; . lon.are * gil" = Lo (R

()"

kEZ

Lr(R%)

2k+1

3 dt 1/q'
X (Z/ / lon,a.r. * fr(z,t)|? ?u(x)dx) )
kez R4 J2k

By a change of variable and Hoélder’s inequality, one has

[yl , [ dr oo
(9) /t/2<|y§t Tdy = ~/t/2 |h(7“)‘ r /Sn—l |Q(y )|d (y)

< 2||h||Aw(R+)||Q||L1(S"*1)~
Combining (9) with Holder’s inequality implies that

(10)  |onar.e* gr(@)|”

— (/t/2< » |9k($—r(y))|Mdy)q,

|ly|™

a'/a
< (/t/ky@ Ih(lyzll)ﬁ(y)ldy)

o)
x /t/kylﬁmk(m r ()
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, /|h Q
< @lhlla, @l i) [ late - TP '“f'y)ln(y)'dy

t/2<y|<t

Then we get from (10) that

2k+1

. Sdt
(11) Z/ / lon.ar.* fulz, t)]? —u(z)ds
]Rd Qk t
kEZ
< @[l @I L1 gn-1))?
ok+1
~ h(ly)Qy dt
S [ lite = RO s,
ez /R 2k Jracyi<e Yl

Noting that v < (p’/q')’ < oco. By Holder’s inequality and invoking Lemma
2.3, one has

2k+1

: r()Rw)] , dt
— q d - d
Z// [ it =m0 Py Saeyan
2k+1
, hghQ) ,  dt
Ik I'(y) — 2)———dydz—
S/Z/ fulz 1) /t/2<|y<t“( () = =) P gy
2k+1 /d i
< 2(2/ | fr(z,1)]7 Tt)oh’,ar(ﬂ)(z)dz
kez’ 2"

2k+1 dt

< 2” e

<2 [ 1S
kEZ

< Cllhlla, @ 19 L1 sn-1)-

This together with (8) and (11) implies (7) for (¢'v) <p < q.
Case 2: (p = ¢q). By the arguments similar to those used in deriving (11),
one can get

1 -
L¥' /4’ (RY) ok e, r (@l o s gt

(12)  lonare* gr(@)]?

_ h(ly))Qy
< @lhlla, ) 1) jgu(x — Ty MED2WL
t/2<|y|<t lyl

By (9), (12), Holder’s inequality and Fubini’s theorem, we have

2k+1
(L o)
it 2k B t Lr(R4)
2k+l
dt
=/ Z/ lon.Q.r, *gk(ff)\q7d$
R4 2k

keZ
< (2llhlla, @I L2 gn-1) T
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ok+1

h(ly dt
S R B e o
Re pez /2* t/2<y|<t |
< (2l ) 123 501" / > lgu(o) s
kEZ
2k+1

dt
o | )9,
keZ J ok t/2<|y|<t lyl t

1/q
< 29|l e 191 57| (S lowl?) |

keZ

q

Lr®%)’

which gives (7) for p = q.
Case 3: (¢ < p < ¢v). By duality and the fact that p/q € (1,00), there
exists a nonnegative function f in L®/9"(R?) with [ £l /oy (may < 1 such that

2t dt\1/4)9
q”
& (S L towarera )™
kEZ

Lr(RY)
2k+1
dt
/ Z/ lon.a.r.t * gr(w)]? tf( x)dr.
RY pez /2¢
By a change of variable and (12), it holds that
2k+1
dt
/ Z/ lono,r * ge(x)|?— f(z)dz
RY joy, J 2k t
< (2||h||A R+)HQHL1 Sn—l))q_
gk+1
h dt
> I T
R ez /2 /2<|y\<t |y

< CllAlla, @ QL sn-1))T"

Ay 2y)| , dt

T dy—d
/de%;gk /Qk //2<y|<t @A) = ly|™ g
22l s, ) 1901 (sr)) 7! / (D lge@)?) oyt () (~2)da.

keZ

Since 7 < (p/q)’ < oo, then by Lemma 2.3 and Holder’s inequality, we get
from (13) and (14) that

2kt 1/q)19
I oo
kez’?2

LP(R4)

q

Lr(R4)
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x lloy 0,0 (F) (=) s’ )

1/q
< Cllay o 190z sn1)] (3 l9sl?)

keZ

q

Lr(RY)
This proves (7) for ¢ < p < ¢y and completes the proof. O

Lemma 2.5. Let 1 < g < co and I' be given as in Lemma 2.3. Suppose that
Qe L(S" 1) and he A (R+) for some v € [2,00). Then

(15) I Z/ Cimancenr®)”,
(Sa)”
keZ

holds, provided that one of the following conditions holds:
() 1<p<g<n;
(ii) v < p < o0 and 7' < g < 0.
Here the above constant C' > 0 is independent of h, 0, v and the coefficients of

{P J }?:1
Proof. This lemma will be proved by considering the following cases:

Case 1: (1 < p < g <+'). By the arguments same as those used in deriving
(8), there exist a nonnegative function u € L®/9)" (R%) with Jull o /0y may = 1
and functions {fy(z,t)} defined on R? x R, with

< C”h”Aw(RH||Q||L1(S"—1)

LP(R?)

[{fk o) e (R ga’ (L' ([2k 2k +1),dt/t))) <1

such that
k+1
(16) 2/2 |JhQFt*gk|th) ‘LP N
NE)
X ;Z/d /22’“'1 loh,o,r * fk(x’t”q,%u(l‘)dx)l/q/.

By some changes of variables and Holder’s inequality it holds that
(A7) onar * fr(@,t)|

/ | fiu(z —T(y),t)
t/2<|y|<t
//Q/Sn . |fe(@ = T(ry), )]12y)|do (y') |h(r )\7

C”hHA (]RJr)”QHLl Sn—1)

|\h(|y\)9(y)|dy

[yl

IN

IA
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X (/t/: /Sn,1 | fi(z = T(ry'), )| \Q(y/”d"(y/)ﬂ)l/q/

r /|1 Yy 1/q
= Cllaeolllilsn ([ 1 -rwor Ela) "
Yy

Note that 1 < (p'/q')’ < co. Invoking Lemma 2.3 and using (17) and Holder’s
inequality, one finds that

- Q)
/ ol — D), 07 W g,
t/2<|y|<t Yl
2k,+1
/| dt
SLL [ ihe-rwor Bt
kez / REJ2F t/2<y|<t ly] t
Q(y)| . dt
/ S oiaor [ ) -9y
Rt f =7 ok t/2<|y|<t |y 3
ok+1

< [L(Z / iz, D f)a;*}w)(z)dz
< CH Z/ |fk

< Ol Ly sn-ry,

1/~
Lr'/d (]Rd)||U;27F(u)HL(p//q/)/(]Rd)

which combining with (16) and the fact that ||h|[a, &) < [[h]la, (&) implies
that

2 diy1/a
1 I 7)
(18) kezz e |oh,o.r,t * gl ; Lo (R

(Sl

keZ

< C||hHA~,(R+)||QHL1(SH—1)

Lr(RY)
This proves (15) for 1 <p < ¢ <~'.

Case 2: (7 < p < 00,7 < g < 00). At first we shall prove the following
inequality

2kt s dt 1/
B I/ sl )
(19) kZEZ . oo * grl” L)

(Zlar)"

kEZ

< Clhlla, @12 L1 sn-1)

LP(R4)

for 2 <y < .
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When v = co. By duality, there exists a nonnegative function f € ¥’ (R)
with || f[[» (gay = 1 such that

ok+1 ok+1
dt dt
H > lonare* gel—|| o0 = > lon.g.r.e * gel 4 f(z)da.
ez’ 2" Lr@®)  JRd g ok
Invoking Lemma 2.3, we can get
k+1
H 2/2 |0h,sz,r,t *gk‘ﬁ’
e 2k t IlLp(R4)
2t dt
< / Z/ ‘Uh,Q,I‘,t*gk|?f($)d$
RY ez /2"
2k+1 dt
< / Z |9k(93)\/ lon.o.r.|* f(fx)?dx
RY kez 2t
< Y lgk(@)lot o (f)(—a)de
RY pez
. _
<[ toul ], o I 00 D

kEZ

< Cllhlla, @) I L sm-)

Z |9 ‘
k€EZ

Lr(R)

which yields (19) for v = oco.
When 2 < v < oo. Since p/4’ > 1, then by duality we can find a nonnegative
function f € L®/7)"(RY) with £l Lo/~ ey < 1 such that

2k+1 ’ ’
’ dt 1/’7 Y
2 I/ ’7)
(20) Z N |oh,Q,r,¢ * gkl . o)
keZ
2k+1
dt
= / Z/ ‘O'h,Q,F,t *gkp —f(x)dx
RY kez /2" t
By the arguments similar to those used to derive (17),
loh.ar* gr()]
1 Q)L YT
< Clla o 1205 ([ ot =Tl )
t/2<|y|<t Yl

which together with (20), the change of variables, Holder’s inequality and
Lemma 2.3 leads to

2kt /dt 1/"//
IS [ o)
kez 2" t

’
Y

Lr(R4)
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< CIRIE, e I0T oy |

2k+1

<>/ e <y>>|7"ﬂ2y(ﬁ”dyff<x>dx

kez 2k t/2<]y|<t

< CIRIY, o I s / S gk (@) ol (F) () da

kEZ

AL
(Z 9el”) \
k€L

< "// 'y’*l
< ORI g, 2 .

Li(Sn—1)

< Nog (N Ly ey

(Sl

< C|nllx '
ez e/~ (]Rd)

TR Loy

This proves (19) for 2 < v < co.
By a change of variable, we have that for any 1 < u,v < oo,

2kt 1/u

(21) H(Z/ onare ol )
1/u

—H Z/ lon,a,r2ve * gel* *)

Lv(R%)

k€L Lo (®D
In light of (19) and (21) we would have
rdt\ 1/
gl
(22 IS [ onararcsal ",
kEZ
A/
< Clblla, el | (S loel™) [, o
kEZ
An application of Lemma 2.3 may yield that
23 Hsup sup |o kg K k‘
(23) keZt€[1,2]| harze g Lr(R)
< [lrhar (suptn)|
h,Q,T kelZ\glJ Lo (RY)
< C|lh Q1 (s (.
< Cliblla, @) 190 e s || suplowl]| | oo
By the interpolation between (22) and (23) one has
2 L dt\ 1/
H(Z loh,0,r2¢0 * Gkl 7) ‘Lp Rd
kez /1 ()
< Ol 1915 [ (S l9el) )

kEZ

61
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This together with (21) yields (15) for v/ < p < o0 and 7' < ¢ < co. This
finishes the proof of Lemma 2.5. O

Lemma 2.6. Let 1 < g < co and I' be given as in Lemma 2.3. Suppose that

Qe LYS" ) and h € A, (Ry) for some y € [2,00). Then fory' < p < oo and
€ [1,2], it holds that

(24) H(Z|ahQI‘2kt*gk| ) ‘

kez e
< Cllrlla, @192 Lt sn-1y (Z|gk| ) ’LP R%)’
kEZ (

The above constant C > 0 is independent of h, 1, v, t and the coefficients of
{Pi}_-

Proof. By duality, there exists a nonnegative function u € ¥’ (R?) with

1Al gy = 1
such that
@) [ Slonararral], ., = [ S lonaran s a@lue)ds
keZ ) keZ
/ S 0k (@) (07 0.0 (8)(—2)de
k€EZ

for all ¢ € [1,2] and p € (1,00). By Lemma 2.3 and Holder’s inequality, we get
from (25) that

26) || Y- loar v+ |
kEZ

< x w)(—- ’
o émk\\m s 17 D) L

> lol
kEZ

for all ¥ < p < co. On the other hand, by the argument similar to those used
in deriving (23),

< Cllhlla, @)1 L1 gn-1)

Lr(R?)

< Clhlla, @ 192l L1 sn-1)

20 s <ol suplosl|.,
(27) k1611Z>|UQ,F,2kt gk o up|gk\ »(RY)

(R4)
for ¥ < p < co. Then (24) follows from an interpolation between (26) and
(27). O

We end this section by present the following lemma, which was proved in

[18].

Lemma 2.7 ([18]). For each k € Z, define the multiplier operator Sy in R™
by Sif(x) = Oy x f(x). Here Oy is defined as in Lemma 2.2. Then
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(i) Forl<p<g<ooand1l<r<p,

I/ | S5 gna|'at) |
kez’l ez

Lp(R™)
2 1/qr 1/r
= C(Z H(Z/ |gt’j’k|th) Lr(R" ) '
jez  kezvl (R™)
(ii) Forl<g<p<ooand 1l <r <yp,
“(2/2‘25 T 1/q
J—k9t,j.k ) .
kez’l jez Lr(r™)

2 1/q)|q r/a\1/7
< oS ([ N(Zae) )™
= Z ) Z |9t..k Lr (&™)

JEL k€Z

3. Proofs of Theorems 1.2—1.4

This section is devoted to presenting Theorems 1.2-1.4. Let us begin with
proving Theorem 1.2.

Proof of Theorem 1.2. Let P be a real polynomial on R of degree N and satisfy
P(0) = 0. We may assume without loss of generality that P(t) = Zi\; btt
with each b; # 0. Let Py(t) = 0 and P)\(t) = E;\ZI bitt for A € {1,2,...,N}.
For 0 < A < N, we define the family of measures {T,?’t} by

-y 1 —2mig- +h y Q Y
Tk{t(f):m/ o—2mi-Pr (o (lu))y wd#
(2F)P Jor-ricyi<ane ly|

At first, one can easily check that for any A € {1,2,..., N}, the following
estimates hold:

(28) Tt (§) = 0;
(29) 721 < Cllhlla, @) 19l 1 (sm-1)3
(30) 72.6(6) = 727 H(€)] < Cllhlla, ) 1920l £ (sm-1)@(256) [B2E]-

Also, by [17, Lemma 2.2] and the arguments similar to those used in deriving
[21, Lemma 2(ii)], one can get

. ey .
(31) |72, (O] < Cllhlla, ) (log @(25 )M bAE]) ™ ===, if o(281)*brg| > 1

for any A € {1,2,..., N}. Here the above constants C' > 0 are independent of
the coefficients of P.
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Now we choose a C3°(R) function ¢ such that ¢(t) = 1 for |t| < 1/2 and
P(t) =0 for [t| > 1. For 1 < A < N and £ € R”, we define the family of
measures {I/]i"t} by

N

Y(e(2")7|bj€]).
A

/\

(32)  12,(6) = o, (€ Hw £ [bs€]) — a2 ()
J

J=2+1

It follows from (29)—(31) that for any A € {1,2,..., N},
(33) 14O < Cllblla, ) min{L, 0(250) brg]};

(34) [112,(6)] < Cllhlla . (log (2 bag]) Tz, if (280 bag] > 1.

Here the above constants C' > 0 are independent of h and the coefficients of P.
Moreover, we get from (28) and (32) that

N
(35) Tlg\,]t = Z Vli\t
A=1

Here we use the convention Ilcpa; = 1. Invoking Lemma 2.4 and using the
change of variable, there exists C' > 0 such that

(36) (2 [ bt i) "

Lp (R")

1/
<2H Z/ ‘Tozkt*9k| *) q’

keZ

ZQH(%%/; 70,0 % gl 7) /q‘LP(R")
(Zlawr) "]

keZ

Lr(R")

< C”h”Aw(RHHQ”Ll(S"—l)

Lr(R™)

for 1 < ¢ < oo and (¢'v)" < p < g7, where the above constant C' > 0 is
independent of h, Q, v and the coefficients of P. By (36) and the definition of
l/]i:“ one can get

/q
(37) I( Z/ e anldr) |

keZ L)
< COllhlla, @l Lrsn-1) (Z"M ) ’m Rn)
kEZ (

for 1 < ¢ < oo and (¢'7)" < p < g7, where the above constant C' > 0 is
independent of h, 2, v and the coefficients of P.
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On the other hand, we get by Minkowski’s inequality and (35) that

0
o0 adt\1l/a
(38)  Migp,, @)= ( / | 2erfle )| )
0 k=—oc0
N adt\1/a
- (/ ‘ Z 2 pToyt*f(l‘) ?>
O =—0Q
0 b 1/q
< S (S e r@rd)
k_—oo kez 2"
1/q
e / i )
keZ
<> Z/ v Fa)lodt)
A=1 keZ

1
=T Z Drqf(z)
A=1
Therefore, to prove Theorem 1.2, it suffices to show that there exists a constant
C > 0 independent of h, €, v and the coefficients of P such that
(39) IITA,quLp(Rn) < Cllhlla,@ollfllzo  ny
;}'/

for any A € {1,2,...,N}, 2 —v <q< 2 and——&—QBA/ 53
Let ¥y » be deﬁned by Ui A(§) = <I>k(§) where ®, is given as in Lemma, 2.2
with ap = ¢(27%)7*|bx|~'. By the properties of ¢ we have

a
1<B)< "M <) for ke
ay

This together with Lemma 2.2 yields that

(40) H(ZI%,A *f|q)1/q‘

kEZ

oy~ 11l ey

forall 1 < A < N and 1 < p,qg < oo. By Minkowski’s inequality and the
definition of Wy y, we have

(41) TAqf Z/ ‘th*\:[lj exx f)(x )th)l/q

<Z Z/ ‘th*‘l’y ko * f)(T )th)l/q

JELZ k€L

= Z Iy jqf (@)

JEL
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By (33), (34) and Plancherel’s theorem, we have

1) el =3 [ [ e B s s

kEZ

<Z/ / 72, (a) Pt (@) P
keZ

< ClIhlIA, . ) 322/ z)|dzx

keZ
< ClIhIIA, @y Bi I 122 @n):
where E;_j = {z € R" : p(2k=7+1) =2 < |prz| < p(287771)=*} and
e : iy .
Bj = [j| mGaT x>2y(§) + B, lmX{jg1}(.7)~
Combining (42) with the fact that 9,(R") = L2(R") implies that

(43) sl < Clhlla e Billfll g,
By (37) and (40) we can get
(44) [xjaflle@ny < CliPlla, @)l 1o, m)

for 1 < ¢ < oo and (¢'v)" < p < g7, where the above constant C' > 0 is
independent of h, 2, v and the coefficients of P.
By interpolation between (43) and (44) we have that for 8 > 7, % <g<

% and = + 537 < 3 < - + there exist 6 € [0,1], ¢1 € (1,00) and

p1E ((qﬂ) ql'y) such that
166 1-6 1 66 1-6 46

257’ ’

p 2 p g 2 @

and

(45) s jaf ey < Cllhlla, @ B fllgo @)
Combining (45) with (41) leads to

[Txgfllze@ny < CllRlla, @) ZBJQHfHFg,q(Rn) < Cllhlla,@o Iz @ny
jez

for any 8 > 7, 2[3/3 <g< 25 and i 2[%/ 257 This gives
(39). 0

Proof of Theorem 1.3. By (38), to prove Theorem 1.3, it suffices to show that
there exists a constant C' > 0 independent of h, ), v and the coefficients of P
such that

(46) 170 f @ < Cllalla, @ollf g ey

for (p, (Z)G(%,ﬂ)z Or%<p<q§2,
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By Lemma 2.5 and the arguments similar to those used to derive (36), there
exists C' > 0 independent of h, 2, v and the coefficients of P such that

2 1/q
(47) H (I;Z/l |T’;\’t *gk‘th> ’ Lp(R)
(St

keZ

< Clhlla, @12 Lrgn-1y Lo

forl<p<qg<~+ orvy <p, qg<oo. By (47) and the definition of V]?’t, it holds
that

(48) H (Z /12 [z 9k|th>1/q

kezZ Lr@®?)
1/q
< Cllhlas e 120 s | (X loel?)
kEZ (&™)

for 1 < p<q<~orvy <p, qg< co. Herethe above constant C > 0 is
independent of h, 2, v and the coefficients of P. By (48) and (40) we can get

(49) 13 gaf e @ny < CllPlla, @)l 5o m)

for v/ < p,g<ocoorl < p<q <+, where the above constant C > 0 is
independent of h, 2, v and the coefficients of P.

By interpolation between (43) and (49) we have that for any p € (ﬁ, B)
and ¢ € (%,ﬁ), there exist 8 € (%,1] and p; € (7/,00) and ¢; € (v, 00)
such that

+ =+ s
m g 2 a2

1 6. 1-0 1 6 1-0 68
2

and
(50) 1xj.aflzo@ny < Clblla, @) B 11l o gny-

Combining (50) with (41) leads to (46) for (p, ¢) € ($75)2~
By interpolation between (43) and (49) again we have that for any pair (p, q)
with%<p<q§2and6>2,thereexist@é(2 Nand 1 <p; <q1 <7

E7
such that
1 0 1-6 1 6 1-6 63
=24 , —==-4 , —>1
p 2 P1 q 2 @ 2
and
(51) 115 5,0f |l r@n) < C||h||A7(R+)B]e||f||ngq(]Rn)‘

Inequality (51) together with (41) leads to (46) for % <p<qg<2and
B> 2. O
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Proof of Theorem 1.4. By (38), to prove Theorem 1.4, it suffices to show that
there exists a constant C > 0, which is independent of h and the coefficients of
P, such that

(52) T30 llr ey < Clllla, el g qary
for any A € {1,2,..., N}, provided that one of the following conditions holds:

(i) g€ (PESHE (B —1) +2), pe (P2 ol and p < g;

(i) ge (5, 8+1),pe(2,8+1) andp > g;

(i) ¢ € (YEZ2 54 1) and p = g.

We now prove (52) by considering the following cases:

Case 1: Proof of (52) for the case (i). For 1 < A < N, we define the
multiplier operator S » in R" by

Seaf () =Yg\ * f(z),

where the functions Wy, » are given as in the proof of Theorem 1.2.
By the definition of ¥y, x, we can write

(53) Thqf(z) = (Z /12 ‘ D S k(W # Wi gn x f)(2)

keZ JEL

q%)l/q.

By Lemma 2.7(i) and (53) we can get
(54) 175l @)

<c(X[(X / e s s@lede)

JEL keZ

/r
< C( >, ||J'A,ayqf||TLP(JR"))1

JEL

r 1/r
LP(]R"))

for 1 <r <p<gq< oo, where I j, is given as in (41).
By interpolation between (43) and (49), for g € (W, v (8—1)+2) and

pE (w,ﬂ, there exist p; € (7/,00), q1 € (7/,00) and 0 € (W, 1]
such that
1 g 1-60 1 0 1-86
=4 , - ==+
p 2 P1 q 2 @
and
(55) s ey < Cllblla o B2 e o

Fix ¢q € (W,’y’(ﬂ —1)+2)and p € (Wﬁ] such that p < ¢, we
can choose 1 < r < p such that @ > 1. Therefore, it follows from (55) that

1/r
1T f oy < Cllblla, g (3 BE) 1 lig @ny < i
JEL
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for q € (w,’y’(ﬁ —1)4+2)and p € (%,Q] such that p < ¢. This

proves (52) for the case (i).
Case 2: Proof of (52) for the case (ii). By Lemma 2.7(ii) and (53), we have

(56) IITAfHLpoRn
1/q)19 r/q\1/r
S (LISt i) )

¢ Z( / ||JA,j,q,tf||‘;p(Rn>dt)T "
Z
(X (2 nsaeS ) )"

jez te[l,2

IN

IN

for any r € (1,p’) and p > ¢, where

/
Ingaif (@ (Z|th*‘1/1 ko x f(a )|>1q-

kez
Fix t € [1,2]. By Lemma 2.6 and the definition of vy, it holds that

67) [(Z i anl) ]

kEZ Lr(®)
< Ol o 120z [ (S 1oel7) ], oo
kEZ (

for 7 < p < oo and 1 < ¢ < co. In light of (57) and (40) we would have
58 Irsae I < Clhlla, @ 9z 1y e
for v/ < p < oo and 1 < ¢ < co. Similar arguments to those used in getting
(43) may yield
(59) g0 Flien) < Clbla g Billf g, o

By interpolating between (58) and (59), for fixed p € (2,8 + 1) and ¢ €
(%,B—l—l), we can choose € (1,p'), p1 € (7/,00), q1 € (1,00) and § € (2=, 1)

B+1°
réf 1_9641-6 1 _ 96 4 1-6
suchthat2>1,p—2—|—p1,q—2—|—q1 and

(60) 175 g.q. fllze@ny < Cliblla, @) Bjllfll o roy-

Here C' > 0 is independent of ¢ and the coefficients of P. It follows from (56)
and (60) that

1/r
(61) IT3Fllzoeey < Cllblla @ (D BI) 1 lig, o
JEL
< Clbllay @ 1l s
This proves (52) for the case (ii).
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Case 3: Proof of (52) for the case (iii). Notice that v'(§—1)+2> g+ 1.
Then the case p = ¢ follows easily from the interpolation between Case 1 and
Case 2. This completes the proof of Theorem 1.4. (I

4. Addition results

In this section we shall present some new results for the parametric Marcink-
iewicz integral operators related to the Littlewood-Paley gX-function and the
area integral S, which are respectively defined by

AL f(x) (// ( : )M
4 z) = Y]
h,Q,Pn,p,p R1+1 t+ |x—y|

X“?L@hmx%”ﬂx—ﬂﬂWDW@qﬁfy@

ly|n—r

where A > 0 and R = R™ x (0, 00);

hQPngpSf( )

= (] L [ 0 o patui o] i) "

ly|"—r

where I'(z) = {(y,t) € RT" 1 [z —y| < t} and h, Q, P, ¢, p be given as in (2).
Before presenting our main results, let us introduce the following lemma,
which follows from [19].

Lemma 4.1. Let A > 1 and 1 < g < co. Then there exists a constant Cy, » > 0
such that for any nonnegative locally integrable function g on R™,

| F @) 5@ < Cos [ O, @) M ) )

where M is the usual Hardy-Littlewood mazximal operator on R™.
As applications of Theorems 1.2-1.4, we can get:

Theorem 4.2. Let P be a real polynomial on R of degree N and satisfy P(0) =
0 and ¢ € F. Let Q satisfy (1) and 1 < g < oo.
(i) If h € A,(Ry) for some v € (1,00] and Q € WFz(S"~!
1
P

5 28 1 o]
B > 4. Then for any <g< 3 and 5 T <

2

267
Aq

12,8 p o o e @y < Cpllhlla, (R+)Hf||po L(R):

(ii) If h € A,(Ry) for some v € [2,00] and Q@ € WFz(S"™ 1) for some
8> 2. Thenf0r$<q§p<,3, we have

A,q,*
|28 b pf e @Ry < Cth||A,Y(R+)Hf”FpU’q(]R")'
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111 S +) Jor some 7y € |2,00| an S - or some
i) If h € A, (Ry) fe 2 d Qe WFzS™1) f
B >1. Then
||///;f\,’s%:*P,¢,pf||Lp(Rn) < Cpllhlla, @)l fllLe®n)
provided that one of the following conditions holds:
(a) g€ (B2, 8+1), pe (2,8+1) and p > g;
(b) g € (M2 84 1) and p = q.

Here the above constants C), > 0 are independent of h and the coefficients of P,
but may depend on p,q,n, A, @, p, N. The same results hold for DJTZVQ Poop.S-

Proof. Fix 1 < ¢ < p < oo. By the duality, LP bounds for M, Hdlder’s
inequality and Lemma 4.1, one has

A,
H%h,g’;,tp,pfllip(]]@n)

— /(///;igj*p,w,pf(w))qg(r)dff

HgHL(p/q)/(]Rn)Sl

<Chr  sup / (ML o £ ()T M (g) ()
HQHL(p/q)’(Rn)Sl R~
< Cn,MLq ‘mlflz,Q,P,ga,pr%P(R")'

Combining this with Theorems 1.2-1.4 implies the conclusions of Theorem 4.2
for &
OF Ah., P p*

On the other hand, one can easily check that

A4,
///fiQ,P,%me(x) = 2n/\/q//lh7g},%pf(x)’

which together with the bounds for ///,f‘ o ».p implies the bounds for

q
‘///h,Q,P,w,p,S‘
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2

3
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6
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