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HOMOLOGY AND SERRE CLASS IN D(R)

Zhicheng Wang

Abstract. Let S be a Serre class in the category of modules and a an

ideal of a commutative Noetherian ring R. We study the containment

of Tor modules, Koszul homology and local homology in S from below.
With these results at our disposal, by specializing the Serre class to be

Noetherian or zero, a handful of conclusions on Noetherianness and van-
ishing of the foregoing homology theories are obtained. We also determine

when TorRs+t(R/a, X) ∼= TorRs (R/a,Ha
t (X)).

Introduction

Throughout this paper, R is a commutative Noetherian ring with identity
and a is an ideal of R. The proofs of some results concerning local homology and
cohomology modules indicate that these proofs apply to certain subcategories of
R-modules that are closed under taking extensions, submodules and quotients.
These subcategories are called Serre classes.

An excursion among the results [5, Proposition 1 and Corollary 1], [10,
Lemma 4.2] and [12, Theorem 2.1] revealed a connection between local homol-
ogy, local cohomology, Ext modules, Tor modules and Koszul (co)homology in
terms of their containment in a Serre class of modules. Aghapournahr, Melk-
ersson and Tousi [1, 2] approached the study of local cohomology modules by
means of the Serre subcategories, and it is noteworthy that their approach en-
ables us to deal with several important problems on local cohomology modules
comprehensively. Faridian [7, 8] brought the local homology into play and un-
covered the connection between all these homology and cohomology theories,
and enhanced the aforementioned results.

The aim of this paper is to extend the ideas of Faridian to complexes of
modules. We study the containment of Tor modules, Koszul homology and
local homology in S from below. This connection has provided a common
language for expressing some results regarding the usual width of modules
and complexes that have appeared in different papers. With these results at
our disposal, a handful of conclusions on Noetherianness and vanishing of the
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foregoing homology theories are obtained. For an R-complex X in DA(R), we

also determine when the R-modules TorRs+t(R/a, X) and TorRs (R/a,Ha
t (X)) are

isomorphic.

1. Preliminaries

This section collects some notions of complexes and Serre classes for use
throughout this paper. For terminology we shall follow [2], [3], [4], [9] and [11].

Complexes. By an R-complex X we mean a sequence of R-modules

· · · −→ Xn+1
dn+1−→ Xn

dn−→ Xn−1
dn−1−→ · · · .

The derived category D(R) is defined as the localization of the homotopy cat-
egory K(R) with respect to the multiplicative system of quasi-isomorphisms.
An R-complexes X is called bounded above if Hn(X) = 0 for n� 0, bounded
below if Hn(X) = 0 for n � 0, and bounded if it is both bounded above
and bounded below. The full triangulated subcategories consisting of bounded
above, bounded below and bounded R-complexes are denoted by D@(R),DA(R)
and D�(R). We also denote by Df(R) the full triangulated subcategory of D(R)
consisting of R-complexes X such that Hi(X) are finitely generated R-modules
for all i ∈ Z. For an R-complex X ∈ D(R), set

infX := inf{n ∈ Z |Hn(X) 6= 0}, supX := sup{n ∈ Z |Hn(X) 6= 0}.

Let X and Y be two R-complexes. For every i ∈ Z, let

TorRi (X,Y ) := Hi(X ⊗L
R Y ).

For an element x in R, denote by K(x) the complex 0 → R
x→ R → 0

concentrated in degrees 1 and 0. The Koszul complex on a sequence x =
{x1, . . . , xn} is the complex

K(x) = K(x1)⊗R · · · ⊗R K(xn).

We write SpecR for the set of prime ideals of R and MaxR for the set of
maximal ideals of R, and set

V(a) = {p ∈ SpecR | a ⊆ p}.

The support and annihilators for X ∈ D(R) are defined by uniting/intersecting
the corresponding sets for the homology modules

SuppRX :=
⋃
`∈Z

SuppRH`(X) = {p ∈ SpecR |Xp 6' 0},

AnnRX :=
⋂
`∈Z

AnnRH`(X) = {r ∈ R | rH(X) = 0}.

a-adic completion. Let M be an R-module. The a-adic completion of M is

Λa(M) = lim←−M/atM
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with inverse system {M/at+1M � M/atM}t>0. The map M → Λa(M) ex-
tends to an additive functor on the category of complexes of R-modules. This
functor admits a left derived functor that we denote LΛa(−) following [11], that

can be computed by LΛa(X) = Λa(F ), where F
'→ X is a semi-flat resolution

of X. For each R-complex X and integer i, the ith derived completion of X
with respect to a is the R-module

Ha
i (X) := Hi(LΛa(X)).

A class S of R-modules is said to be a Serre class if for any short exact
sequence 0→ M ′ → M → M ′′ → 0 of R-modules, one has M ∈ S if and only
if M ′,M ′′ ∈ S. A property P concerning modules is said to be a Serre property
if

SP(R) := {M ∈ ModR |M satisfies the property P}
is a Serre class for every ring R.

Example 1.1 ([7, Example 2.2] or [8, Example 2.2.2]). Let a be an ideal of R.
The following classes of modules are Serre classes:

(1) The zero class.
(2) The class of all Noetherian R-modules.
(3) The class of all artinian R-modules.
(4) The class of all minimax R-modules.
(5) The class of all minimax and a-cofinite R-modules.
(6) The class of all weakly Laskerian R-modules.
(7) The class of all Matlis reflexive R-modules.
(8) The class of all semi-discrete linearly compact R-modules.

2. Containment in Serre properties

For an arbitrary X in DA(R), we study the containment of homology −⊗L
R

X, Koszul homology and local homology Ha
i (X) in S from below, and de-

termine when the R-module TorRs+t(R/a, X) is isomorphic to the R-module

TorRs (R/a,Ha
t (X)). The crucial step to achieve these is to recruit the tech-

nique of spectral sequences.
Let X be in DA(R) and N an R-module with SuppRN ⊆ V(a). Then there

exists a Künneth spectral sequences

E2
p,q = TorRp (N,Ha

q(X))
p
+3 TorRp+q(N,X).(∗)

The next lemma is one of the principal results in this work.

Lemma 2.1. Let X be in DA(R) and s > 0, t > infX such that

(1) TorRs+t(R/a, X) is in SP(R);

(2) TorRs+1+i(R/a,Ha
t−i(X)) is in SP(R) for all 1 6 i 6 t− infX;

(3) TorRs−1−i(R/a,Ha
t+i(X)) is in SP(R) for all 1 6 i 6 s− 1.

Then the R-module TorRs (R/a,Ha
t (X)) belongs to SP(R).
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Proof. Consider the spectral sequence (∗). If s = 0, there exists a finite filtra-
tion

0 = U−1 ⊆ U0 ⊆ · · · ⊆ U t−infX = TorRt (R/a, X)

such that Up/Up−1 ∼= E∞p,t−p for t > p + infX. Let r > 2. Consider the
differential

Er
r,t−r+1

dr
r,t−r+1−−−−−→ Er

0,t

dr
0,t−−→ Er

−r,t+r−1 = 0.

We obtain the following short exact sequence

0→ Imdrr,t−r+1 → Er
0,t → Er+1

0,t → 0.

Since t−r+1 6 t−1 and Er
r,t−r+1 is a subquotient of E2

r,t−r+1 and E2
r,t−r+1 ∈

SP(R) by the condition (2), it follows that Imdrr,t−r+1 ∈ SP(R) for r > 2. By

the condition (1), Er
0,t
∼= E∞0,t

∼= U0/U−1 ∈ SP(R) for r � 0. By using the

above sequence inductively, one has R/a⊗ Ha
t (X) ∼= E2

0,t ∈ SP(R). The proof
of the case s = 1 is similar to s = 0. Assume s > 2. Consider the following
filtration

0 = U−1 ⊆ U0 ⊆ · · · ⊆ Us+t−infX = TorRs+t(R/a, X),

where Up/Up−1 ∼= E∞p,s+t−p for s + t > p + infX. Let r > 2. Consider the
differential

Er
s+r,t−r+1

dr
s+r,t−r+1−−−−−−−→ Er

s,t

dr
s,t−−→ Er

s−r,t+r−1.

Since Er
s−r,t+r−1 = 0 for r > s + 1 and Er

s+r,t−r+1 = 0 for r > t − infX + 2,
it follows from the conditions that Imdrs+r,t−r+1 and Imdrs,t are in SP(R) for
r > 2. Let r > s+ 1. Then Er

s−r,t+r−1 = 0. So we have a short exact sequence

0→ Imdrs+r,t−r+1 → Er
s,t → Er+1

s,t → 0.

Since Er
s,t
∼= E∞s,t

∼= Us/Us−1 ∈ SP(R) for r � 0, it follows from the above

sequence that Es+1
s,t ∈ SP(R). Thus the following exact sequence

0→ Imds2s,t−s+1 → Kerdss,t → Es+1
s,t → 0

implies that Kerdss,t ∈ SP(R), and the next exact sequence

0→ Kerdss,t → Es
s,t → Imdss,t → 0

implies that Es
s,t ∈ SP(R). By repeating this process, we obtain that

TorRs (R/a,Ha
t (X)) ∼= E2

s,t ∈ SP(R).

The proof is complete. �

Corollary 2.2. Let X be in DA(R) and t > infX.

(1) If TorRt (R/a, X) ∈ SP(R) and TorRt+1−i(R/a,Ha
i (X)) ∈ SP(R) for all

i < t, then R/a⊗Ha
t (X) is in SP(R).

(2) If TorRt+1(R/a, X) ∈ SP(R) and TorRt+2−i(R/a,Ha
i (X)) ∈ SP(R) for all

i < t, then TorR1 (R/a,Ha
t (X)) is in SP(R).
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(3) If TorRt+2(R/a, X) ∈ SP(R) and TorRt+3−i(R/a,Ha
i (X)) ∈ SP(R) for all

i < t, then R/a⊗RHa
t+1(X) ∈ SP(R) if and only if TorR2 (R/a,Ha

t (X)) ∈ SP(R).

An R-module L is cocyclic if L is a submodule of E(R/m) the injective
envelope of R/m for some m ∈ MaxR. The set CoassRM of coassociated
prime of M is the set of prime ideals p of R such that there exists a cocyclic
homomorphic image L of M with p = AnnRL.

Corollary 2.3. Let t be an integer and X ∈ DA(R) such that TorRi (R/a, X)
is artinian for all i. If Ha

j (X) is artinian for all j < t, then R/a⊗Ha
t (X) and

TorR1 (R/a,Ha
t (X)) are artinian. In particular, V(a) ∩ CoassRHa

t (X) is finite.

Lemma 2.4. Let M be a finitely generated R-module, s an integer and X ∈
DA(R) such that Hi(X) ∈ SP(R) for all i 6 s. Then TorRi (M,X) ∈ SP(R) for
all i 6 s.

Proof. There exists a Künneth spectral sequence

E2
p,q = TorRp (M,Hq(X))

p
+3 TorRp+q(M,X).

We may assume that i > infX. There is a finite filtration

0 = U−1 ⊆ U0 ⊆ · · · ⊆ U i−infX = TorRi (M,X)

such that Up/Up−1 ∼= E∞p,i−p for i − p > infX. Since E∞p,i−p is a subquotient

of E2
p,i−p, it follows from [2, Lemma 2.1] that E∞p,i−p ∈ SP(R) for all infX 6

i− p 6 s. A successive use of the short exact sequence

0→ Up−1 → Up → Up/Up−1 → 0,

implies that TorRi (M,X) ∈ SP(R) for all i 6 s. �

Let P be a Serre property and a an ideal of R. Following [7, Definition 2.5],
we say that P satisfies the condition Da if the following statements hold:

(i) If R is a-adically complete (i.e., R ∼= Λa(R) := R̂a) and M/aM ∈ SP(R)
for some R-module M , then Ha

0(M) ∈ SP(R).
(ii) For any a-torsion R-module M , we have M ∈ SP(R) if and only if

M ∈ SP(R̂a).
The following theorem that is one of our main results of this paper, yields a

characterization of (local) homology modules that are in SP(R).

Theorem 2.5. Let K be the Koszul complex on a sequence of n generators
for a and s an integer. For each R-complex X in DA(R), the following are
equivalent:

(1) TorRi (R/a, X) is in SP(R) for all i 6 s (for all i);

(2) TorRi (R/b, X) is in SP(R) for all i 6 s (for all i) and all ideals b ⊇ a;

(3) TorRi (R/p, X) is in SP(R) for all i 6 s (for all i) and all p ∈ V(a);

(4) TorRi (R/
√
a, X) is in SP(R) for all i 6 s (for all i);
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(5) TorRi (L,X) is in SP(R) for each finitely generated R-module L with
SuppRL ⊆ V(a) and all i 6 s (for all i);

(6) TorRi (Y,X) is in SP(R) for each R-complex Y ∈ Df
�(R) with SuppRY ⊆

V(a) and all i 6 s + infY (for all i);

(7) TorRi (K,X) is in SP(R) for all i 6 s (for all i).
If in addition, P satisfies the condition Da, then above conditions are equivalent
to

(8) Ha
i (X) is in SP(R̂a) for all i 6 s.

Proof. (1) ⇒ (2) Fix b ⊇ a. Since R/b⊗L
R X ' R/b⊗L

R/a R/a⊗L
R X, it follows

from Lemma 2.4 that TorRi (R/b, X) ∈ SP(R) for all i 6 s (for all i).
(2) ⇒ (3), (5) ⇒ (1) and (5) ⇒ (4) are clear.
(4) ⇒ (3) This follows from the implication (1) ⇒ (3) since V(a) = V(

√
a).

(3) ⇒ (5) Assume that L is finitely generated with SuppRL ⊆ V(a). Then
there is a prime filtration 0 = L0 ⊆ L1 ⊆ · · · ⊆ Lt = L such that Lj/Lj−1

∼=
R/pj and pj ∈ SuppRL for j = 1, . . . , t. We argue by induction on t. If

t = 1, then L = L1/L0
∼= R/p with p ∈ V(a). By assumption TorRi (L,X) ∼=

TorRi (R/p, X) ∈ SP(R). Assume that TorRi (L,X) ∈ SP(R) for all finitely
generated R-modules L with SuppRL ⊆ V(a) having a prime filtration of length
t− 1. Let L have a prime filtration 0 = L0 ⊆ L1 ⊆ · · · ⊆ Lt = L. Consider the
short exact sequence 0 → Lt−1 → L → L/Lt−1 → 0. We obtain the following
exact sequence

TorRi (Lt−1, X)→ TorRi (L,X)→ TorRi (L/Lt−1, X).

By the induction hypothesis, one has TorRi (L,X) ∈ SP(R) for all i 6 s (for all
i).

(5) ⇒ (6) Let Y ∈ Df
�(R) with SuppRY ⊆ V(a). We use induction on

supY − infY . If infY = supY = r, then Y ' ΣrHr(Y ) and TorRi+r(Y,X) ∼=
TorRi (Hr(Y ), X) ∈ SP(R) for all i 6 s. Now assume that supY − infY > 0. Set

Y ′ = 0 → YsupY /KerdsupY
d̄supY−−−−→ YsupY−1

dsupY −1−−−−−→ · · · . One obtain an exact
triangle ΣsupY HsupY (Y ) → Y → Y ′  in D(R), which induces the following
exact sequence

TorRi (ΣsupY HsupY (Y ), X)→ TorRi (Y,X)→ TorRi (Y ′, X).

Therefore, TorRi (Y,X) ∈ SP(R) for all i 6 s + infY by the induction.
(6) ⇒ (7) This follows from K ∈ Df

�(R) and SuppRK ⊆ V(a).
(7) ⇒ (1) One has the following isomorphism

R/a⊗L
R K ⊗L

R X ' (
∐
j>0

Σj(R/a)(
n
j ))⊗L

R X.

Since K⊗RX ∈ DA(R), it follows from Lemma 2.4 that TorRi (R/a,K⊗RX) ∈
SP(R) for all i 6 s (for all i). Consequently, TorRi (R/a, X) is in SP(R) for all
i 6 s (for all i).
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Now assume that P satisfies the condition Da. Since TorRi (R/a, X) is a-
torsion,

TorRi (R/a, X) ∼= TorR̂
a

i (R̂a/aR̂a, R̂a ⊗R X)

for all i both as R-modules and R̂a-modules. By [15, Lemma 2.3], one has

Ha
i (X) ∼= HaR̂a

i (R̂a ⊗R X)

for all i both as R-modules and R̂a-modules.
(8) ⇒ (1) First suppose that R is a-adically complete. By Lemma 2.4,

TorRi (R/a, X) ∼= TorRi (R/a,LΛa(X)) ∈ SP(R) for all i 6 t. Now, consider

the general case. Since HaR̂a

i (R̂a ⊗R X) ∼= Ha
i (X) ∈ SP(R̂a) for all i 6 t,

TorRi (R/a, X) ∼= TorR̂
a

i (R̂a/aR̂a, R̂a ⊗R X) ∈ SP(R̂a) for all i 6 t by the

preceding proof. But TorRi (R/a, X) is a-torsion, so the condition Da implies

that TorRi (R/a, X) ∈ SP(R) for all i 6 t.
(1) ⇒ (8) First suppose that R is a-adically complete. We argue by induc-

tion on s. If s = infX, then R/a ⊗R HinfX(X) ∼= TorRinfX(R/a, X) ∈ SP(R).

Hence Ha
0(HinfX(X)) ∈ SP(R) by the condition Da. Let F

'→ X be a semi-
flat resolution of X such that Fi = 0 for i < infX. Then Ha

0(HinfX(X)) ∼=
H0(LΛa(HinfX(X))) by definition and

Λa(HinfX(F )) = lim←−HinfX(F )/atHinfX(F )

∼= lim←−HinfX(R/at ⊗R F )

∼= HinfX(ΛaF ) = Ha
infX(X)

by the isomorphism HinfX(F )/atHinfX(F ) ∼= HinfX(R/at ⊗R F ) and the fact
that {R/at ⊗R F}t>1 is an inverse system of epimorphisms. Since

H0(LΛa(HinfX(X)))→ Λa(HinfX(F ))

is an epimorphism, it follows that Ha
infX(X) ∈ SP(R). Suppose that s > infX

and that the result has been proved for smaller values of s. By Corollary
2.2, one obtains that R/a ⊗R Ha

i (X) ∈ S(R) for all i 6 s. Hence Ha
i (X) ∼=

Ha
0(Ha

i (X)) ∈ S(R) for all i 6 s. Now, consider the general case. Since

TorRi (R/a, X) is a-torsion and TorRi (R/a, X) ∈ SP(R) for all i 6 s, it follows

that TorR̂
a

i (R̂a/aR̂a, R̂a ⊗R X) ∈ SP(R̂a) for all i 6 s. So the special case

yields that Ha
i (X) ∼= HaR̂a

i (R̂a ⊗R X) ∈ SP(R̂a) for all i 6 s. �

Corollary 2.6 ([14]). Let a be an ideal of R and X ∈ DA(R). Suppose that R
is a-adically complete. Then the following are equivalent:

(1) R/a⊗L
R X ∈ Df(R);

(2) Y ⊗L
R X ∈ Df(R) for all Y ∈ Df

�(R) with SuppRY ⊆ V(a);

(3) K(x) ⊗L
R X ∈ Df(R) for some (equivalently, for every) generating se-

quence x of a;
(4) LΛa(X) ∈ Df(R̂a).
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Proof. This follows from the fact that the Serre property of being finitely gen-
erated satisfies the condition Da by [6, Lemma 2.5]. �

Proposition 2.7. Let a ⊆ b be two ideals of R, s be an integer and X ∈ DA(R)

such that TorRj (R/b,Ha
i (X)) ∈ SP(R) for all i and all j (resp. for i 6 s and

all j). Then TorRi (R/b, X) ∈ SP(R) for all i (resp. for i 6 s).

Proof. We may assume that s > infX. Consider the spectral sequence (∗). The
hypothesis implies that E2

p,q ∈ SP(R) for all p and all q (resp. for infX 6 q 6 s
and all p). For all i (resp. for infX 6 i 6 s), there is a finite filtration

0 = U−1 ⊆ U0 ⊆ · · · ⊆ U i−infX = TorRi (R/b, X)

such that Up/Up−1 ∼= E∞p,i−p for i > p+ infX. Since E∞p,i−p is a subquotient of

E2
p,i−p for all i − p (resp. for infX 6 i − p 6 s), it follows that E∞p,i−p ∈ S for

i > p + infX. A successive use of the short exact sequence

0→ Up−1 → Up → Up/Up−1 → 0

implies that TorRi (R/b, X) ∈ SP(R). �

Corollary 2.8. Let a ⊆ b be two ideals of R and X ∈ DA(R) such that

Hb
j (Ha

i (X)) ∈ SP(R̂b) for all i and j. If P satisfies the condition Db, then

Hb
i (X) ∈ SP(R̂b) for all i.

Proof. Since Hb
j (Ha

i (X)) ∈ SP(R̂b) for all j, TorRj (R/b,Ha
i (X)) ∈ SP(R) by

Theorem 2.5 for all j. Hence Proposition 2.7 implies that TorRi (R/b, X) ∈
SP(R) for all i. But P satisfies the condition Db, so Hb

i (X) ∈ SP(R̂b) for all i
by Theorem 2.5 again. �

Proposition 2.9. Let K be the Koszul complex on a sequence of n generators
for a and X an arbitrary R-complex. If the Serre property P is closed under
taking inverse limits, then one has

inf{` ∈ Z |Ha
` (X) is not in SP(R̂a)}

= inf{` ∈ Z |TorR` (R/a, X) is not in SP(R)}

= inf{` ∈ Z |TorR` (K,X) is not in SP(R)}.

Proof. Let the first quantity be r, the second one be s, and the third one be t.

Set X>n : · · · → Xn+1
dn+1−−−→ Xn −→ 0. Then {X>n+1 � X>n}n60 is an

inverse system of split epimorphism and X = lim←−X>n. So the inverse system

obtained from applying any additive covariant functor to {X>n+1 � X>n}n60

satisfies the Mittag-Leffler condition, which implies that Ha
i (X) ∼= lim←−Ha

i (X>n),

TorRi (R/a, X) ∼= lim←−TorRi (R/a, X>n) and TorRi (K,X) ∼= lim←−TorRi (K,X>n).

Consequently, r = s = t by Theorem 2.5, as claimed. �
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Corollary 2.10. Let K be the Koszul complex on a sequence of n generators
for a. For each R-complex X in D(R), the following are equivalent:

(1) TorRi (K,X) = 0 for all infX 6 i 6 n + supX;
(2) ExtiR(R/a, X) = 0 for all −supX 6 i 6 n− infX;

(3) TorRi (R/a, X) = 0 for all infX 6 i 6 n + supX;
(4) Ha

i (X) = 0 for all i ∈ Z;
(5) Hi

a(X) = 0 for all i ∈ Z.

Proof. Note that Hi
a(X) = 0 for all i < −supX and i > n − infX by [13,

Corollary 4.28] and Ha
i (X) = 0 for all i < infX and i > n + supX by [13,

Corollary 5.27]. �

Corollary 2.11. Let X be an R-complex and Y ∈ Df
�(R). Then

(1) R/AnnRY ⊗L
R X ' 0 if and only if Y ⊗L

R X ' 0.
(2) RHomR(R/AnnRY,X) ' 0 if and only if RHomR(Y,X) ' 0.

The following theorem find some sufficient conditions for validity of the
isomorphism TorRs+t(R/a, X) ∼= TorRs (R/a,Ha

t (X)).

Theorem 2.12. Let X be in DA(R) and s > 0, t > infX such that

(1) TorRs+t−i(R/a, X) = 0 for all infX 6 i < t or t + 1 6 i 6 s + t;

(2) TorRs+1+i(R/a,Ha
t−i(X)) = 0 for all 0 6 i 6 t− infX;

(3) TorRs−1−i(R/a,Ha
t+i(X)) = 0 for all 0 6 i 6 s− 1.

Then TorRs+t(R/a, X) ∼= TorRs (R/a,Ha
t (X)).

Proof. Consider the spectral sequence (∗). There is a finite filtration

0 = U−1 ⊆ U0 ⊆ · · · ⊆ Us+t−infX = TorRs+t(R/a, X)

such that Up/Up−1 ∼= E∞p,s+t−p for s + t > p + infX. Let r > 2. Consider the
differential

Er
s+r,t−r+1

dr
s+r,t−r+1−−−−−−−→ Er

s,t

dr
s,t−−→ Er

s−r,t+r−1.

By conditions (2) and (3), we have Er
s+r,t−r+1 = 0 = Er

s−r,t+r−1 for r > 2.

As E∞p,s+t−p is a subquotient of E2
p,s+t−p = TorRp (R/a,Ha

s+t−p(X)), we have

Up/Up−1 ∼= E∞p,s+t−p = 0 for 0 6 p 6 s − 1 by conditions (1) and (3), and

Us/Us−1 ∼= E∞s,t and Up/Up−1 ∼= E∞p,s+t−p = 0 for s + 1 6 p 6 s + t− infX by

conditions (1) and (2), it follows that 0 = U−1 = · · · = Us−1 and Us = · · · =

Us+t−infX = TorRs+t(R/a, X). So

TorRs (R/a,Ha
t (X)) = E2

s,t
∼= E∞s,t

∼= Us = TorRs+t(R/a, X).

We get the isomorphism we seek. �
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