DOI QR코드

DOI QR Code

Pretreatment for Improving Selective Hydrogenation Reaction of α, β-Unsaturated Aldehydes

α, β-불포화 알데히드의 선택적 수소화 반응성 향상을 위한 전처리 방법

  • 신국승 (롯데케미칼 연구소) ;
  • 차미선 (롯데케미칼 연구소) ;
  • 이창수 (충남대학교 공과대학 응용화학공학과)
  • Received : 2022.08.15
  • Accepted : 2022.10.17
  • Published : 2023.02.01

Abstract

In commercial production processes of methyl methacrylate, there is a methacryl aldehyde as an intermediate or impurities. The existence of impurities is critical factor because of significant decrease of the conversion rate and selectivity of the entire chemical reaction. This study found that an acid was the main cause of the decrease in reactivity among various impurities because an acid rapidly lowers the activity of a catalyst and promotes a side reaction, the hetero Diels-Alder reaction. Therefore, the pretreatment methods with the removal of acid were comparatively evaluated by the selective hydrogenation reaction of the carbonyl group of the reactants. Based on several experimental conditions, we believe that proposed effective pretreatment improves productivity with appropriate economical process.

일반적인 메틸 메타아크릴레이트(methyl methacrylate) 상업 공정의 중간체인 메타아크릴 알데히드(methacryl aldehyde)에는 불순물이 존재한다. 이는 전체 화학 반응의 전환율과 선택도가 크게 저하되는 원인이며 메타아릴 알코올(methallyl alcohol) 생산성 향상의 주요 문제이다. 본 연구는 다양한 불순물 중에서 반응성 저하의 주요 원인이 산(acid)임을 발견하였다. 불순물로 존재하는 산은 촉매의 활성을 급격하게 저하시키며, 부반응인 불균일 딜스-알더 반응(hetero Diels-Alder reaction)이 촉진됨을 확인하였다. 따라서, 메타아크릴 알데히드의 카르보닐기(carbonyl group)를 선택적으로 수소화하는 반응에서 반응 불순물인 산을 제거하기 위해 전처리 방법을 비교 평가하였고, 생산성을 향상시키기 위한 효과적인 방법을 제안하였다. 이를 통해 제안된 조건 하에서 최적의 선택적 수소화 반응 조건을 완성하였다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C3004936).

References

  1. https://en.wikipedia.org/wiki/Hydrogenation.
  2. Leilei, Z., Maoxiang, Z., Aiqin, W. and Tao, Z., "Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms," Chem. Rev., 120(2), 683-733(2020). https://doi.org/10.1021/acs.chemrev.9b00230
  3. Bo, S., Zhi-Chao, C. and Zhang-Jie, S., "Exploration of Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations," Chem. Res., 48(3), 886-896(2015). https://doi.org/10.1021/ar500345f
  4. Lee, S. H., Jeon, J. H., Kim, J. C. and Ha, K. S., "Development of the Highly Dispersed Palladium-Nickel Catalysts for Catalytic Partial Oxidation of Methane," Korean Chem. Eng. Res., 59(2), 269-275(2021).
  5. Baek, S. H., Yoon, K. H. and Shin, C. H., "Catalytic Ammonia Decomposition on Nitridation-Treated Catalyst of Mo-Al Mixed Oxide," Korean Chem. Eng. Res., 60(1), 159-168(2022). https://doi.org/10.9713/KCER.2022.60.1.159
  6. Sukaran, S. A. and Aditya, B., "Kinetics of Aromatics Hydrogenation on HBEA," Journal of Catalysis, 383, 24-32(2020). https://doi.org/10.1016/j.jcat.2019.12.039
  7. Yasuo, K., Setsuko, K., Shuichk, N., Takaharu, O. and Kenzk, T., "Selective Hydrogenation of Carbon Monoxide on Palladium Catalysts," Faraday Discuss. Chem. Soc., 72, 135-143(1981). https://doi.org/10.1039/DC9817200135
  8. Francisco, F., Carmen, N. and Miguel Y., "Catalytic Asymmetric Transfer Hydrogenation of Ketones: Recent," Tetrahedron: Asymmetry, 26(15-16), 3769-3790(2015).
  9. Xiaocheng, L. and Tiefeng, W., "Highly Selective Catalysts for the Hydrogenation of Unsaturated Aldehydes: A Review," ACS Catal., 10, 2764-2790(2020).
  10. Varadhan, K., Basujit, C. and Chidambaram, G., "Ruthenium-Catalyzed Urea Synthesis by N-H Activation of Amines," Inorg. Chem., 56(12), 7278-7284(2017). https://doi.org/10.1021/acs.inorgchem.7b00962
  11. Bos, A. N. R. and Westerterp, K. R., "Mechanism and Kinetics of the Selective Hydrogenation of Ethyne and Ethene," Chem. Engi. and Proc., 32, 1-7(1993). https://doi.org/10.1016/0255-2701(93)87001-B
  12. Yiting, G., Jack, R., Farbod, S., Vladislav, G., Zhiyao, Z. and Scott, A., "Highly Selective Hydrogenation of C=C Bonds Catalyzed by a Rhodium Hydride," J. Am. Chem. Soc., 143, 9657-9663(2021). https://doi.org/10.1021/jacs.1c04683
  13. Xiaofeng, W., Xinhua, L., Peng, G. and Qingbo, L., "Recent Advances in Selective Hydrogenation of Cinnamaldehyde over Supported Metal-Based Catalysts," ACS Catal., 10, 2395-2412(2020). https://doi.org/10.1021/acscatal.9b05031
  14. Sudakar, P. Gunniya, H. and Yoon, S. H., "Direct Heterogenization of the Ru-Macho Catalyst for the Chemoselective Hydrogenation of α, β-Unsaturated Carbonyl Compounds," Inorg. Chem., 60, 6881-6888(2021). https://doi.org/10.1021/acs.inorgchem.0c03681
  15. Zhiyi, S., Shuo, W. and Wenxing, C., "Metal Single-atom Catalysts for Selective Hydrogenation of Unsaturated Bonds," J. Mater. Chem. A, 9, 5296(2021).
  16. Sean, E., Alen, H., Robert, and H. Morris, "Mechanisms of the H2-hydrogenation and Transfer Hydrogenation of Polar Bonds-catalyzed by Ruthenium Hydride Complexes," Coordination Chemistry Reviews., 248, 2201-2237(2004). https://doi.org/10.1016/j.ccr.2004.04.007
  17. Odile, E. and Robert, H., "Outer Sphere Hydrogenation Catalysis," New J. Chem., 37, 21-27(2013). https://doi.org/10.1039/c2nj40659d
  18. Jun Seok K., "Physico-Chemical Pretreatment of Herbaceous Biomass by Organosolv Flow-Through Process," Korean Chem. Eng. Res., 56(4), 441-45(2018).
  19. Tuulia H., "Critical Evaluation of Sample Pretreatment Techniques," Anal Bioanal Chem., 394, 743-758(2009). https://doi.org/10.1007/s00216-009-2772-2
  20. Sk, J. and Debasish, G., "Synthesis and Characterization of Stable Thiazolylazo Anion Radical Complexes of Ruthenium (II)," Transition Met Chem, 34, 937-942(2009). https://doi.org/10.1007/s11243-009-9284-y
  21. Ralph, G., Sharon, L., Michael, E. and George, M., "Synthesis of Functional Chelating Diphosphines Containing the Bis[2-(diphenylphosphino) ethyl] amino Moiety and the Use of These Materials in the Preparation of Water-Soluble Diphosphine Complexes of Transition Metals," J. Org. Chem., 46, 2861-2867(1981). https://doi.org/10.1021/jo00327a005
  22. Wataru, K., Takaji, M., Osamu, O., Yasunori, I., Kunimori, A., Shigeru, T., Kenya, I., Tohru, K., Noboru, S. and Takao, S., "Catalytic Hydrogenation of Esters. Development of an Efficient Catalyst and Processes for Synthesizing (R)-1,2-Propanediol and 2-(l-Menthoxy) Ethanol," Org. Pro. Res. Dev., 16, 166-171(2012). https://doi.org/10.1021/op200234j
  23. Sean, E. C., Alen, H. and Robert, H. M., "Mechanisms of the H2-hydrogenation and Transfer Hydrogenation of Polar Bonds Catalyzed by Ruthenium Hydride Complexes," Coordination Chemistry Reviews, 248, 2201-2237(2004).
  24. Kim, S. H. and Hong, S. H., "Ruthenium-Catalyzed Urea Synthesis Using Methanol as the C1 Source," Org. Lett., 18, 212-215(2016). https://doi.org/10.1021/acs.orglett.5b03328
  25. Pavan, M. and Adrew, R., Physical Methods in Chemistry and Nano Science, Rice University(2012).
  26. Ferenc, J., Jozsef, K., Attila, B. and Agnes, K., "Solution pH: A Selectivity Switch in Aqueous Organometallic Catalysis-Hydrogenation of Unsaturated Aldehydes Catalyzed by Sulfonatophenyl-phosphane-Ru Complexes," Angew. Chem. Int. Ed., 37(7), 969-979(1998). https://doi.org/10.1002/(sici)1521-3773(19980420)37:7<969::aid-anie969>3.0.co;2-9
  27. Gabor, P., Jozsef, K., Attila, B., Gabor, L., Levente, N. and Ferenc, J., "(para-Diphenylphosphino) Benzenesulfonic Acid and Its Ruthenium (II) Complexes: An Old Water Soluble Phosphine Ligand in a New Perspective," Can. J. Chem., 79, 635-641(2001). https://doi.org/10.1139/v01-077
  28. Charles, A. M., Radhika, P. N. and Brian, J. F., "pH-Dependent Selective Transfer Hydrogenation of α,β-Unsaturated Carbonyls in Aqueous Media Utilizing Half-Sandwich Ruthenium(II) Complexes," Organometallics, 26, 429-438(2007). https://doi.org/10.1021/om060892x