DOI QR코드

DOI QR Code

Entropy and its Relation with the Property of Molecule, Phase and Component

엔트로피와 분자 특성, 상 및 성분의 관계

  • Jaeeon, Chang (Department of Chemical Engineering, University of Seoul)
  • 장재언 (서울시립대학교 화학공학과)
  • Received : 2022.08.31
  • Accepted : 2022.11.08
  • Published : 2023.02.01

Abstract

We study the relationship of entropy with the properties of molecules and also with the macroscopic specifications of the system, i.e., component and phase. Understanding different viewpoints of classical mechanics and quantum mechanics for the indistinguishability of molecules belonging to the same component, we discuss a few thermodynamic systems in which the properties of molecules are to be consistent with the component as a macroscopic term of classifying the molecules. With a clear definition of thermodynamic microstate, the drawback of the Boltzmann statistics caused by the distinguishability of molecules is avoided, and the Gibbs paradox of entropy consequently disappears. Corresponding to the characteristics of fluid and solid phases, we investigated the effects of the indistinguishability and the symmetry number of molecules and the number of microstates realized in time on the partition function and the entropy. In particular, we show that crystalline solid can be regarded as a system which does not satisfy the ergodic hypothesis.

열역학 계를 구성하는 분자들의 특성, 거시적 규정의 성분, 상의 종류가 엔트로피에 미치는 관련성을 고찰하였다. 같은 성분에 속하는 분자들의 불구별성에 대하여 고전역학과 양자역학의 관점의 차이를 이해하고, 분자의 특성이 거시적 분류의 기준인 '성분'과 부합하는가를 검토하였다. 계의 열역학적 미시 상태에 관한 정의를 명확히 함으로써 분자의 구별성에 기인하는 볼츠만 통계학의 결함을 제거하고, 그 결과로 엔트로피에 대한 깁스 역설이 해소된다. 유체 및 고체의 상 변화에서 분자의 불구별성, 대칭수, 그리고 실현되는 미시 상태들의 수의 변화가 분배 함수와 엔트로피에 미치는 영향을 고찰하였다. 특히, 결정성 고체는 에르고딕 가설을 따르지 않는 열역학 계로 다룰 수 있음을 보인다.

Keywords

Acknowledgement

이 논문은 2019년도 서울시립대학교 교내학술연구비에 의하여 지원되었습니다.

References

  1. Gibbs, J. W., Elementary Principles in Statistical Mechanics, Yale University Press (1902).
  2. McQuarrie, D. A., Statistical Mechanics, Harper and Row, New York (1976).
  3. Sekerka, R. F., Thermal Physics, Elsevier, Amsterdam (2015).
  4. Ben-Naim, A., A Farewell to Entropy, World Scientific, Singapore (2008).
  5. Swendsen, R. H., "Statistical Mechanics of Colloids and Boltzmann's Definition of the Entropy," Am. J. Phys., 74, 187-190 (2006). https://doi.org/10.1119/1.2174962
  6. Swendsen, R. H., "How Physicists Disagree on the Meaning of Entropy," Am. J. Phys., 79, 342-348(2011). https://doi.org/10.1119/1.3536633
  7. Flory, P. J., Principles of Polymer Chemistry, Cornell University Press(1953).
  8. Nagle, J. F., "Regarding the Entropy of Distinguishable Particles," J. Stat. Phys., 117, 1047-1062(2004). https://doi.org/10.1007/s10955-004-5715-5
  9. Gray, C. G. and Gubbins, K. E., Theory of Molecular Fluids - Vol 1: Fundamentals, Oxford University Press, New York (1984).
  10. Frenkel, D. and Smit, B., Understanding Molecular Simulation 2nd ed., Academic Press (2002).
  11. Sprik, M., Cheng, A., and Klein, M. L., "Modeling the Orientational Ordering Transition in Solid Fullerene (C60)," J. Phys. Chem., 96, 2027-2029(1992). https://doi.org/10.1021/j100184a004
  12. Chang, J. and Sandler, S. I., "Free Energy of the Solid C60 Fullerene Orientational Order-disorder Transition," J. Chem. Phys., 125, 054705(2006).
  13. Kim, M., Chang, J., and Sandler, S. I., "Monte Carlo Simulations for the Free Energies of C60 and C70 Fullerene Crystals by Acceptance Ratio Method and Expanded Ensemble Method," J. Chem. Phys., 140, 084110(2014).