DOI QR코드

DOI QR Code

Effect of Voltage Range and Number of Activation Cycles in the Activation Process of a Polymer Electrolyte Fuel Cell

고분자 전해질 연료전지의 활성화과정에서 전압 범위 및 활성화 횟수의 영향

  • Donggeun, Yoo (Department of Chemical Engineering, Sunchon National University) ;
  • Sohyeong, Oh (Department of Chemical Engineering, Sunchon National University) ;
  • Sunggi, Jung (SANG-A FRONTEC CO.Ltd) ;
  • Jihong, Jeong (SANG-A FRONTEC CO.Ltd) ;
  • Kwonpil, Park (Department of Chemical Engineering, Sunchon National University)
  • Received : 2022.09.27
  • Accepted : 2022.10.31
  • Published : 2023.02.01

Abstract

The activation process is essential for PEMFC to improve initial performance. The most commonly used activation method is a voltage change (load change) method, which may accompany degradation of the electrode catalyst if excessively performed. In many activation processes, the voltage change range is activated in a wide range from 0.4 V to OCV, and research is needed to reduce the voltage change range in order to prevent electrode catalyst degradation and shorten the activation time. Therefore, in this study, when the activation voltage range was 0.4~0.6 V, 0.4~0.8 V, and 0.4~OCV, we tried to research and develop an effective activation method by analyzing the performance and characteristics of the electrode and polymer membrane. The performance improvement was the lowest in the activation with a wide voltage range from 0.4 V to the highest OCV, and the performance decreased by 10% when activated for 56 cycles. The 0.4~0.6 V activation cycle showed the highest performance improvement up to 20% and the smallest decrease in performance due to overactivation, indicating that it is optimal method.

PEMFC(Proton Exchange Membrane Fuel Cells)는 초기 성능향상을 위해 활성화(Activation) 과정이 필수적이다. 제일 많이 사용되는 활성화 방법은 전압변화(부하변화) 방법으로 과잉으로 진행될 경우 전극 촉매 열화를 동반할 수 있다. 많은 활성화 과정에서 전압변화 범위를 0.4 V에서 OCV 까지 넓은 범위에서 활성화를 진행시키는데 전극 촉매 열화 방지와 활성화 시간을 단축시키기 위해 전압변화 범위를 감소시키는 연구가 필요하다. 그래서 본 연구에서는 활성화 전압범위를 0.4~0.6 V, 0.4~0.8 V, 0.4~OCV로 했을 때 성능과 전극, 고분자막의 특성 변화를 분석해 효과적인 활성화 방법을 연구개발하고자 하였다. 0.4 V에서 제일 높은 OCV 까지 전압 범위를 넓힌 활성화에서 성능 향상도 제일 낮고 56 사이클 활성화 했을 때 활성화 전보다 오히려 성능이 10% 감소했다. 0.4~0.6 V 활성화 사이클에 의해 성능이 최고 20%까지 제일 높게 향상되고 과잉 활성화에 의한 성능 감소도 제일 작아서 최적 임을 보였다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구입니다(20017400).

References

  1. Shyam, S. Kocha, and Bruno, G. Pollet, "Advances in Rapid and Effective Break-in/conditioning/recovery of Automotive PEMFC Stacks," Current Opinion in Electrochemistry, 311, 1-8(2022).
  2. USFCC Single Cell Test protocol http://www.members.fchea.org/core/import/PDFs/Technical%20Resources/MatComp%20Single%20Cell%20Test%20Protocol%2005-014RevB.2%20071306.pdf.
  3. Tsotridis, G., Pilenga, A., De Marco, G. and Malkow, T., "EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications," JRC Science for Policy report, https://doi.org/10.2790/54653. Appendix D2(2015).
  4. Voss, H. H., Barton, R. H., Sexsmith, M., Turchyn, M. J., "Conditioning and Maintenance Methods for Fuel Cells," Ballard Power Systems Inc.; Canada Patent A2429598A1(2003).
  5. Zhang, J., Ramaswamy, N. and Kumaraguru, S. P., "Fuel Cell Stack Break-in Procedures and Break-in Conditioning Systems," US Patent 20180261858A1. GM Global Technology Operations LLC(2018).
  6. Rapaport, P. A., Blowers, A. J., James, L. and Balasubramanian L., "Fast MEA Break-in and Voltage Recovery," US Patent 9099703B2, GM Global Technology Operations LLC(2015).
  7. Choo, H. S., Hyundai Motor Company, "Method of Accelerating Fuel Cell Activation," US Patent 20170271693A1(2017).
  8. Serhiy, C., Nadiia, K., Karl, J. and Mayrhofer, J., "Durability of Platinum-based Fuel Cell Electrocatalysts: Dissolution of Bulk and Nanoscale Platinum," Nano Energy, 29, 275-298(2016). https://doi.org/10.1016/j.nanoen.2016.03.005
  9. U.S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
  10. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., "Cell Evaluation and Analysis Protocol Guidline," NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30(2014).
  11. Topalov, A. A., Cherevko, S., Zeradjanin, A. R., Meier, J. C., Katsounaros, I., Mayrhofer, K. J. J. and Josef, C., "Towards a Comprehensive Understanding of Platinum Dissolution in Acidic Media," Chem. Sci., 5, 631(2014).
  12. Oh, S., Lim, D., Lee, D. and Park, K., "Effect of Support on the Performance and Electrochemical Durability of Membrane in PEMFC," Kor. Chem. Eng. Res., 58(4), 524-529(2020).
  13. Hwang, B. C., Oh, S. H., Lee, M. S., Lee, D. H. and Park, K. P., "Decrease in Hydrogen Crossover through Membrane of Poly-mer Electrolyte Membrane Fuel Cells at the Initial Stages of an Acceleration Stress Test," Korean J. Chem. Eng., 35(11), 2290-2295(2018). https://doi.org/10.1007/s11814-018-0142-5
  14. Song, J., Kim, S., Ahn, B., Ko, J. and Park, K., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Kor. Chem. Eng. Res., 51(1), 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68
  15. Jeong, J. J., Jeong, J. H, Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Measurement of Hydrogen Crossover During PEMFC Operation," Kor. Chem. Eng. Res., 53(4), 412-416(2015). https://doi.org/10.9713/kcer.2015.53.4.412
  16. Cho, H. S., Ohashi, M. and Van Zee, J. W., "The Effect on PEMFC Contamination of Functional Groups of Some Organic Contaminants," ECS Transactions, 41(1) 1487-1499(2011). https://doi.org/10.1149/1.3635679