DOI QR코드

DOI QR Code

Enhancement of Membrane Durability in PEMFC by Fucoidan and Tannic Acid

후코이단과 탄닌산에 의한 PEMFC 고분자막의 내구성 향상

  • Received : 2022.07.25
  • Accepted : 2022.10.31
  • Published : 2023.02.01

Abstract

In order to improve the durability of the PEMFC(Proton Exchange Membrane Fuel Cells) polymer membrane, a radical scavenger and a support are used. In this study, the durability of membranes containing fucoidan extracted from seaweeds and tannic acid serving as a crosslinking agent is evaluated to improve chemical and physical durability. Physical durability is evaluated by measuring tensile strength, and chemical durability is measured by Fenton experiment. Membrane and electrode assembly (MEA) is prepared and mechanical and chemical durability are measured through accelerated durability evaluation in the cell. The tensile strength measurement showed that fucoidan and tannic acid can improve the mechanical durability of the membrane by improving the strain rate and yield strength. It is shown in Fenton experiment that fucoidan acts as a radical scavenger. As a result of the accelerated durability test in the unit cell, fucoidan improved both chemical and mechanical durability, increasing the accelerated durability evaluation time by 38.1% compared to the additive-free membrane. When tannic acid is added, the durability of the polymer membrane is improved by 13.9% by improving the mechanical durability.

PEMFC(고분자전해질 연료전지) 고분자막의 내구성을 향상시키기 위해서 라디칼 제거제와 지지체가 사용되고 있다. 본 연구에서는 화학적 내구성과 물리적 내구성을 향상시키기 위해서 해조류에서 추출한 후코이단과 가교제 역할을 하는 탄닌산을 첨가한 고분자막의 내구성을 평가하였다. 물리적 내구성은 인장강도를 측정해 확인했고, 화학적 내구성은 Fenton 실험으로 측정하였다. 막과 전극합체(MEA)를 제조하여 셀에서 가속 내구 평가를 통해 기계적 내구성과 화학적 내구성을 평가하였다. 인장강도 측정으로 후코이단과 탄닌산의 변형율과 항복강도 등을 향상시켜 고분자막의 기계적 내구성을 향상시킬 수 있음을 보였다. 후코이단이 라디칼 제거제 역할을 함을 Fenton 실험에서 확인했다. 단위전지에서 가속 내구 실험 결과 후코이단은 화학적 내구와 기계적 내구를 모두 향상시켜 무첨가막보다 가속 내구 평가 시간을 38.1% 증가시켰고, 탄닌산을 추가하면 기계적 내구성 향상에 의해 고분자막의 내구성이 13.9% 향상되었다.

Keywords

Acknowledgement

본 논문은 순천대학교 교연비 사업에 의하여 연구되었음.

References

  1. Borup, R., Meyers, J., Pivovar B, Kim, Y. S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K. and Iwashita, N., "Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation," Chem. Rev., 107(10), 3904-3951(2007). https://doi.org/10.1021/cr050182l
  2. Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program," J. Power Sources, 143(1-2), 191-196(2005). https://doi.org/10.1016/j.jpowsour.2004.12.003
  3. U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
  4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140(12), 2872-2877(1993). https://doi.org/10.1149/1.2220925
  5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D.P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127(1-2), 127-134(2004). https://doi.org/10.1016/j.jpowsour.2003.09.033
  6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  7. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48(11), 1543-1548(2003). https://doi.org/10.1016/S0013-4686(03)00026-4
  8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152(1), A104-A113(2005). https://doi.org/10.1149/1.1830355
  9. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  10. Wilkinson. D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  11. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  12. U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
  13. Wang, H. Tang, M. and Pan, D. Li., "Ex Situ Investigation of the Proton Exchange Membrane Chemical Decomposition," Int. J. Hydrogen Energy., 33(9), 2283-2288(2008). https://doi.org/10.1016/j.ijhydene.2008.01.052
  14. Kinumoto,T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R. and Takaka, A., "Durability of Perfluorinated Ionomer Membrane Against Hydrogen Peroxide," J. Power Sources, 158(2), 1222-1228(2006). https://doi.org/10.1016/j.jpowsour.2005.10.043
  15. Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., "Degradation of Nafion Membrane by Oxygen Radical," Korean Chem. Eng. Res., 44(6), 597-601(2006).
  16. Pearman, B. P., Mohajeri, N., Slattery, D. K., Hampton, M. D., Seal, S. and Cullen, D. A., "The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perfluorosulfonic Acid Polymer Electrolyte Membranes," Polym. Degrad. Stab., 98(9),1766-1772(2013). https://doi.org/10.1016/j.polymdegradstab.2013.05.025
  17. Hao, J., Jiang, Y., Gao, X., Xie, F., Shao, Z. and Yi, B., "Degradation Reduction of Polybenzimidazole Membrane Blended with CeO2 as a Regenerative Free Radical Scavenger," J. Membr. Sci., 522(15), 23-30(2017). https://doi.org/10.1016/j.memsci.2016.09.010
  18. Zhu, H., Pei, S., Tang, J., Li, H., Wang, L., Yuan, W. and Zhang, Y., "Enhanced Chemical Durability of Perfluorosulfonic Acid Membranes Through Incorporation of Terephthalic Acid as Radical Scavenger," J. Membr. Sci., 432(1), 66-72(2013). https://doi.org/10.1016/j.memsci.2012.12.050
  19. Cha, S. H., Ahn, M. W., Lee, J. S., Kim, Y. S., Kim, D. U., Byun, T. G. and Park, K. P., "The Effect of Fcoidan Molecula Weight on Cosmetic Functionl," Korean Chem. Eng. Res., 50(4), 604-609(2012). https://doi.org/10.9713/kcer.2012.50.4.604
  20. Tatiana, N. Z., Nataliiya, M. S., Irina, B. P., Vladimir, V. I., Andrey, S. S., Elena, V. S. and Lyudmila, A. E., "A New Proce Dure for the Separation of Water-Soluble Polysaccharides from Brown Seaweeds," Carbohydr. Res., 322(1-2), 32-39(1999). https://doi.org/10.1016/S0008-6215(99)00206-2
  21. Fortun, A., Khalil, A., Gagne, D., Douziech, N., Kuntz, C. and Dupuis, G., "Monocytes Influence the Fate of T Cells Challenged with Oxidised Low Density Lipoproteins Towards Apoptosis or MHC-Restricted Proliferation," Atherosclerosis, 156(1), 11-21(2001). https://doi.org/10.1016/S0021-9150(00)00575-X
  22. Collis, S., Fisher. A. M., Tapon-Bretaudiere, J., Boisson, C., Durand, P. and Jozefonvicz, J., "Anticoagulant Properties of a Fucoidan Fraction," Thromb. Res., 64(2), 143-154(1991). https://doi.org/10.1016/0049-3848(91)90114-C
  23. Mauray, S., Raucourt, E., Talbot, J., Jozefowicz, M. and Fis cher, A., "Mechanism of Factor IXa Inhibition by Antithrombin in the Presence of Unfractionated and Low Molecular Weight Heparins and Fucoidan," Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1387(1-2), 184-194(1998). https://doi.org/10.1016/S0167-4838(98)00120-4
  24. Saito, A., Yoneda, M., Yokohama, S., Okada, M., Haneda, M. and Nakamura, K., "Fucoidan Prevents Concanavalian A-Induced Liver Injury Through Induction of Endogenous 1L-10 in Mice," Hepatology Research, 35(3), 190-198(2006). https://doi.org/10.1016/j.hepres.2006.03.012
  25. Carla Vilelaa, Ana C. Q. Silva, Eddy M. Domingues, Gil Goncalves, Manuel A. Martins, Filipe M. L. Figueiredo, Sonia A. O. Santos and Carmen S. R. Freire, "Conductive Polysaccharides-based Proton-exchange Membranes for Fuel Cell Applications: The Case of Bacterial Cellulose and Fucoidan," Carbohydr. Polym., 230(15), 115604(2020).
  26. Carla, V., Joao, D. M., Ana, C. Q., Silva, D. M., Filipe, M. L., Figueiredo, A. J. D. and Carmen, S. R. F., "Flexible Nanocellulose/Lignosulfonates Ion-Conducting Separators for Polymer Electrolyte Fuel Cells," Nanomaterials, 10(9), 1713(2020).
  27. Yao, Y., Liu, J., Liu, W., Zhao, M., Wu, B., Gu, J. and Zou, Z., "Vitamin E Assisted Polymer Electrolyte Fuel Cells," Energy Environ. Sci., 7, 3362-3370(2014).
  28. Oh, S. H., Kak, A. H., Oh, S. J., Lee, D. W., Na, I. C. and Park, K. P., "Decrease of Membrane Degradation in PEMFC by Fucoidan," Korean Chem. Eng. Res., 58(1), 59-63(2020).