DOI QR코드

DOI QR Code

PEM 수전해에서 막과 전극의 내구성에 미치는 구동 온도의 영향

Effect of Operation Temperature on the Durability of Membrane and Electrodes in PEM Water Electrolysis

  • 유동근 (순천대학교 화학공학과) ;
  • 김성민 (순천대학교 화학공학과) ;
  • 황병찬 (순천대학교 화학공학과) ;
  • 오소형 (순천대학교 화학공학과) ;
  • 박권필 (순천대학교 화학공학과)
  • Donggeun, Yoo (Department of Chemical Engineering, Sunchon National University) ;
  • Seongmin, Kim (Department of Chemical Engineering, Sunchon National University) ;
  • Byungchan, Hwang (Department of Chemical Engineering, Sunchon National University) ;
  • Sohyeong, Oh (Department of Chemical Engineering, Sunchon National University) ;
  • Kwonpil, Park (Department of Chemical Engineering, Sunchon National University)
  • 투고 : 2022.05.04
  • 심사 : 2022.07.14
  • 발행 : 2023.02.01

초록

PEM (Proton Exchange Membrane) 수전해의 성능향상에 대해 많은 연구개발이 진행되었으나, 내구성에 대한 연구는 아직 초기 단계라고 할 수 있다. 본 연구는 성능향상을 위해 PEM 수전해 구동 온도를 상승시켰을 때, 수전해 내구성에 미치는 영향에 대해 연구하였다. 50~80 ℃ 온도 범위에서 일정 전류 조건으로 구동하면서 전압변화, I-V, CV (Cyclic Voltammetry), LSV (Linear Sweep Voltammetry), Impedance, FER (Fluoride Emission Rate) 등을 측정했다. 운전온도가 상승할수록 열화속도가 증가했다. 50~65 ℃에서는 IrO2 전극 촉매 열화가 PEM 수전해 셀의 내구성에 주로 영향을 주었다. 80 ℃에서는 고분자 막과 전극 열화가 비슷하게 진행되어 short 저항이 1.0 kΩ·cm2 이하로 감소하면서 shorting 현상에 의해 구동한지 144시간 만에 성능이 초기의 약 1/3로 감소하였다.

Although a lot of research and development has been conducted on the performance improvement of PEM (Proton Exchange Membrane) water electrolysis, the research on durability is still in early stage. This study investigated effect of temperature on the water electrolysis durability when driving temperature of the PEM water electrolysis was increased to improve performance. Voltage change, I-V, CV (Cyclic Voltammetry), LSV (Linear Sweep Voltammetry), Impedance, and FER (Fluoride Emission Rate) were measured while driving under a constant current condition in a temperature range of 50~80 ℃. As the operating temperature increased, the degradation rate increased. At 50~65 ℃, the degradation of the IrO2 electrocatalyst mainly affected the durability of the PEM water electrolysis cell. At 80 ℃, the polymer membrane and electrode degradation proceeded similarly, and the short resistance decreased to 1.0 kΩ·cm2 or less, and the performance decreased to about 1/3 of the initial stage after 144 hours of operation due to the shorting phenomenon.

키워드

과제정보

본 논문은 순천대학교 교연비 사업에 의하여 연구되었음.

참고문헌

  1. Alexander, B. and Hartmut, S., "Current Status of Water Electrolysis for Energy Storage, Grid Balancing and Sector Coupling Via Power-to-gas and Power-to-liquids: A Review," Renew. Sustain. Energy Rev., 82, 2440-2454(2018). https://doi.org/10.1016/j.rser.2017.09.003
  2. Ju, H. K., Badwal, S. and Giddey, S., "Comprehensive Review of Carbon and Hydrocarbon Assisted Water Electrolysis for Hydrogen Production," Appl. Energy, 231(1), 502-533(2018). https://doi.org/10.1016/j.apenergy.2018.09.125
  3. Kumar, S. S. and Himabindu, V., "Hydrogen Production by PEM Water Electrolysis-A Review," Mater. Sci. for Energy Technol., 2(3), 442-454(2019). https://doi.org/10.1016/j.mset.2019.03.002
  4. Grigoriev, S. A., Millet, P. and Fateev, V. N., "Evaluation of Carbon-supported Pt and Pd Nanoparticles for the Hydrogen Evolution Reaction in PEM Water Electrolysers," J. Power Sources, 177(2), 281-285(2008). https://doi.org/10.1016/j.jpowsour.2007.11.072
  5. Millet, P., Ngameni, R., Grigoriev, S. A., Mbemba, N., Brisset, F., Ranjbari, A. and Etievant, C., "PEM Water Electrolyzers: From Electrocatalysis to Stack Development," Int. J. Hydrogen Energy, 35(10), 5043-5052(2010). https://doi.org/10.1016/j.ijhydene.2009.09.015
  6. Carmo, M., Fritz, D. L., Mergel, J. and Stolten, D., "A Comprehensive Review on PEM Water Electrolysis," Int. J. Hydrogen Energy., 38(12), 4901-4934(2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
  7. Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., "Degradation of Nafion Membrane by Oxygen Radical," Korean Chem. Eng. Res., 44(6), 597-601(2006).
  8. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  9. Oh, H. S., Nong, H. N., Reier, T., Bergmann, A., Gliech, M., Teschner, D. and Strasser, P., "Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction," J. Am. Chem. Soc., 138(38), 12552-12563(2016). https://doi.org/10.1021/jacs.6b07199
  10. Siracusano, S., Baglio, V., Dijk, N. Van., Merlo, L. and Arico, A. S., "Enhanced Performance and Durability of Low Catalyst Loading PEM Water Electrolyser Based on a Short-side Chain Perfluorosulfonic Ionomer," Appl. Energy, 192(15), 477-489(2017). https://doi.org/10.1016/j.apenergy.2016.09.011
  11. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31(13), 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  12. Rakousky, C., Reimer, U., Wippermann, K., Carmo, M., Lueke, W. and Stolten, D., "An Analysis of Degradation Phenomena in Polymer Electrolyte Membrane Water Electrolysis," J. Power Sources, 326(15), 120-128(2016). https://doi.org/10.1016/j.jpowsour.2016.06.082
  13. Chandesris, M. V., Medeau, N., Guillet, S., Chelghoum, D., Thoby, F. and Fouda, O., "Membrane Degradation in PEM Water Electrolyzer: Numerical Modeling and Experimental Evidence of the Influence of Temperature and Current Density," Int. J. Hydrogen Energy., 40(3), 1353-1366(2015). https://doi.org/10.1016/j.ijhydene.2014.11.111
  14. Oh, S. H., Lim, D. H. and Park, K. P., "Durability Evaluation of PEMFC Electrode Using Oxygen as Cathode Gas,"Korean Chem. Eng. Res., 59(1), 11-15(2021).
  15. Zhiani M., Maidi S., Taghiabadi M., "Comparative Study of OnLine Membrane Electrode Assembly Activation Procedures in Proton Exchange Membrane Fuel Cell," FUEL CELLS, 13(5), 946-955(2013). https://doi.org/10.1002/fuce.201200139
  16. Oh, S. H., Cho, W. J., Lim, D. H. Yoo, D. G. and Park, K. P., "Reducing the Test Time for Chemical Durability of PEMFC Polymer Membrane," Korean Chem. Eng. Res., 59(3), 333-338 (2021). https://doi.org/10.9713/KCER.2021.59.3.333
  17. Bessarabov, D., Wang, H., Li, H. and Zhao, N., "PEM Electrolysis for Hydrogen Production: Principles and Applications," Boca Raton, FL, USA: CRC Press, 2015.
  18. Rasten, E., Hagen, G. and Tunold, R., "Electrocatalysis in Water Electrolysis with Solid Polymer Electrolyte," Electrochimica Acta, 48 3945-3952(2003). https://doi.org/10.1016/j.electacta.2003.04.001
  19. Mench, M. M., Emin, C. K. and Veziroglu, T. N., "Polymer Electrolyte Fuel Cell Degradation," Academic Press, Oxford, Waltham, MA, 64-77(2012).
  20. Song, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res., 51(1), 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68
  21. Lee, H., Kim, T. H., Son, I. J., Lee, J. H., Lim, T. W. and Park, K. P., "Effect of Temperature on Electrochemical Degradation of Membrane in PEMFC," Korean Chem. Eng. Res., 47(4), 441-445(2009).