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A RELATIVE RÉNYI OPERATOR ENTROPY†
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Abstract. We define an operator version of the relative Rényi entropy

as the generalization of relative von Neumann entropy, and provide its

fundamental properties and the bounds for its trace value. Moreover, we
see an effect of the relative Rényi entropy under tensor product, and show

the sub-additivity for density matrices.
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1. Introduction

Claude Shannon was the originator of information theory which has had a
lot of influence on physics, medical science, and economics and he systematized
information theory from a mathematical perspective rather than a physical one.
In [12], Shannon defined the expected value when m characters are expected
with the probability pi as the (Shannon) entropy given by

H(p) := −
m∑
i=1

pi log2 pi.

As the definition suggests, the entropy signifies the average of the amount of
information, while the relative entropy means the closeness of two probability
distributions and is defined as

D(p|q) := H(p, q)−H(p) = −
m∑
i=1

pi log2 qi +

m∑
i=1

pi log2 pi = −
m∑
i=1

pi log2
qi
pi
,

where H(p, q) is the joint entropy of p and q. This is called the Kullback-Leibler
divergence [9].
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In quantum mechanics the role of a probability vector (p1, p2, . . . , pm) is
played by a density matrix, which is a positive semi-definite Hermitian matrix
of trace 1. Density matrices play a crucial role in quantum mechanics, quantum
decoherence, and quantum information and computation. The quantum entropy
of a density matrix ρ is defined as

S(ρ) := −trρ log ρ.

One can see easily that S(ρ) = H(λ), where λ = (λ1, λ2, . . . , λm) is an m-tuple
of non-negative eigenvalues of ρ.

The quantum relative entropy, also called the von Neumann entropy, is de-
fined by extending the Kullback-Leibler divergence from classical mechanics to
quantum mechanics. The relative von Neumann entropy is defined as

D(ρ|σ) := tr(ρ(log ρ− log σ))

for density matrices ρ and σ. Such quantum relative entropy plays an important
role in the entanglement of a quantum state and the Markov chain.

Let ρ, σ, τ, ω be positive semi-definite operators, where ρ, τ be non-zero. Sup-
pose kerσ ⊂ ker ρ and kerω ⊂ ker τ , where ker ρ is a kernel of ρ. Rényi intro-
duced six axioms of the relative entropy (or divergence) in the quantum infor-
mation theory and proved that the Rényi divergence satisfies the six axioms (see
[10]).

(1) D(ρ|σ) is continuous in ρ, σ;
(2) D(UρU∗|UσU∗) = D(ρ|σ) for any unitary matrix U ;
(3) D

(
I| 12I

)
= 1;

(4) D(ρ|σ) ≥ 0 if ρ ≥ σ and D(ρ|σ) ≤ 0 otherwise;
(5) D(ρ⊗ τ |σ ⊗ ω) = D(ρ|σ) +D(τ |ω);
(6) there exists a strictly monotone and continuous function g such that if

tr(ρ+ τ) ≤ 1 and tr(σ + ω) ≤ 1 then

D(ρ⊗ τ |σ ⊗ ω) = g−1

(
trρ

tr(ρ+ τ)
· g(D(ρ|σ)) + trτ

tr(ρ+ τ)
· g(D(τ |ω))

)
.

In this paper, we consider new type of quantum relative Rényi entropy as the
parameterized version of the relative von Neumann entropy D(ρ|σ):

Rα(ρ|σ) =
1

α− 1

[
tr
(
σ

1−α
2α ρσ

1−α
2α

)α

− 1
]

for 0 < α < 1, and will examine whether Rα satisfies several properties of Rényi’s
axioms. More precisely, we prove that Rα is invariant under a unitary congruence
transformation corresponding to (2), is non-negative corresponding to (4), and
has a subadditivity corresponding to (5). Before we show this properties, we
define the operator version Tα of the relative Rényi entropy and introduce the
relationship with the von Neumann entropy and the boundedness of Tα for any
two positive definite matrices.
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2. Preliminaries on relative Rényi entropy

Let Hm be a real vector space of all m × m Hermitian matrices, and let
Pm ⊂ Hm be the open convex cone of all positive definite matrices. Note that
the closure Pm coincides with the closed convex cone of all positive semi-definite
matrices. For A,B ∈ Hm we define as A ≤ B if and only if B − A is positive
semi-definite, as A < B if and only if B − A is positive definite. This is known
as the Loewner partial order.

Let α > 0 and α ̸= 1. The standard Rényi entropy (or standard Rényi
divergence) of A and B in Pm is given [11] by

Dα(A|B) =
1

α− 1
log

trB
1−α
2 AαB

1−α
2

trA
,

meanwhile, the sandwiched Rényi entropy (or sandwiched Rényi divergence) of
A and B is given [10, 13] by

D̃α(A|B) =
1

α− 1
log

tr
(
B

1−α
2α AB

1−α
2α

)α

trA
.

In addition, we have from [8, Corollary 8.2]

D̃α(A|B) ≤ Dα(A|B) ≤ D̂α(A|B)

for 0 < α ≤ 2 and α ̸= 1, where

D̂α(A|B) =
1

α− 1
log

trB#αA

trA
,

and B#αA = B1/2(B−1/2AB−1/2)αB1/2 is known as the weighted geometric

mean of A and B. In this sense, D̂α(A|B) is called the maximal Rényi entropy
of A and B.

For density matrices ρ and σ, the sandwiched Rényi entropy (or quantum
Rényi divergence) is defined by

D̃α(ρ|σ) =
1

α− 1
log tr(σ

1−α
2α ρσ

1−α
2α )α

for any α ∈ (0, 1)∪(1,∞). In [6] the factor (trρ)−1 was appeared in the definition

of sandwiched Rényi entropy D̃α(ρ|σ), but it could be dropped for any density
matrix ρ.

Remark 2.1. Note that D̃α(ρ|σ) is the relative von Neumann entropy for α = 1,
that is,

D̃1(ρ|σ) := lim
α→1

D̃α(ρ|σ) = trρ(log ρ− log σ).

For α = 1/2, Dα(ρ|σ) is closely related to the fidelity F (ρ, σ) = tr(σ1/2ρσ1/2)1/2,
that is,

D1/2(ρ|σ) = −2 logF (ρ, σ).
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3. Relative Rényi operator entropy

We consider in this article the operator version of relative Rényi entropy. Let
A,B ∈ Pm and α > 0, α ̸= 1. The relative Rényi operator entropy of A and B
is defined by

Tα(A|B) =
1

α− 1

[(
B

1−α
2α AB

1−α
2α

)α

−A
]
.

Theorem 3.1. For any A,B ∈ Pm

lim
α→1

Tα(A|B) = A logA− 1

2
[(logB)A+A(logB)].

Proof. Let β =
1− α

2α
. Then

d

dα
(BβABβ)α =

d

dα
eα log(BβABβ)

= eα log(BβABβ)

[
log(BβABβ)− 1

2α
(BβABβ)−1{(logB)BβABβ +BβABβ(logB)}

]
.

So

lim
α→1

Tα(A|B) = lim
α→1

d

dα
eα log(BβABβ) = A logA− 1

2
[(logB)A+A(logB)].

□

Since the trace map is continuous and tr(AB) = tr(BA), we obtain the fol-
lowing.

Corollary 3.2. For any A,B ∈ Pm

lim
α→1

trTα(A|B) = trA(logA− logB).

We see some fundamental properties of the relative Rényi operator entropy.

Theorem 3.3. The relative Rényi operator entropy Tα satisfies

(1) Tα(A|B) = 0 if and only if A = B,
(2) Tα(UAU∗|UBU∗) = UTα(A|B)U∗ for any unitary matrix U ,
(3) Tα(·|B) : Pm → Pm for given α ∈ (0, 1) and B ∈ Pm is convex: for any

A1, A2, B ∈ Pm and λ ∈ [0, 1]

Tα((1− λ)A1 + λA2|B) ≤ (1− λ)Tα(A1|B) + λTα(A2|B).

Proof. (1) Assume that Tα(A|B) = 0 for α > 0, α ̸= 1. ThenB
1−α
2α AB

1−α
2α =

A
1
α , and taking congruence transformation by A1/2 we have(

A
1
2B

1−α
2α A

1
2

)2

= A
1+α
α .

Taking square root on both sides and simplifying yield A
1−α
2α = B

1−α
2α ,

and hence, A = B. The converse is trivial.
(2) The invariance under unitary congruence transformation (2) is obvious,

since UAtU∗ = (UAU∗)t for any A ∈ Pm and t ∈ R.
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(3) Let 0 < α < 1. One can write the relative Rényi operator entropy as

Tα(A|B) =
1

α− 1

[
B

1−α
2α (B

α−1
α #αA)B

1−α
2α −A

]
.

By joint concavity of two-variable weighted geometric mean, we have

B
α−1
α #α((1− λ)A1 + λA2) ≥ (1− λ)B

α−1
α #αA1 + λB

α−1
α #αA2.

Since the congruence transformation is operator monotone,

B
1−α
2α

(
B

α−1
α #α((1− λ)A1 + λA2)

)
B

1−α
2α

≥ (1− λ)(B
1−α
2α A1B

1−α
2α )α + λ(B

1−α
2α A2B

1−α
2α )α.

Since the translation by −((1 − λ)A1 + λA2) is order preserving and a
multiplication by a negative scalar α − 1 is order reversing, we obtain
(3) after a simple calculation.

□

The following provides the boundedness for trace value of relative Rényi op-
erator entropy.

Theorem 3.4. For any A,B ∈ Pm and α ∈ (0, 1)

tr(A−B) ≤ trTα(A|B) ≤ tr(AB−1A−A).

Proof. Note from [3, Theorem 10] that for any A,B ∈ Pm and α ∈ (0, 1)

trB#αA ≤ trB1−αAα ≤ tr(B
1−α
2α AB

1−α
2α )α ≤ tr[(1− α)B + αA].

So we obtain

1

α− 1
tr[B#αA−A] ≥ 1

α− 1
tr[B1−αAα −A] ≥ trTα(A|B) ≥ tr(A−B). (1)

Since

A−AB−1A ≤ A#tB −A

t
≤ B −A

for any t ∈ (0, 1) from [4, 5], replacing α be 1 − t in (1) and applying the
symmetry of weighted geometric mean: A#tB = B#1−tA we obtain

tr(A−B) ≤ trTα(A|B) ≤ 1

α− 1
tr[B#αA−A]

= −tr
A#tB −A

t
≤ tr(AB−1A−A).

□

Remark 3.1. Taking the limit as α → 1 to the first inequality in Theorem 3.4
we obtain

trA(logA− logB) ≥ tr(A−B).

This is known as the Klein’s inequality in [2, Exercise 4.3.4].
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The quantity Fα(A,B) = tr(B
1−α
2α AB

1−α
2α )α appeared in [13] is a parameter-

ized version of fidelity, since the usual fidelity is the special case for α = 1/2.
Several extremal representations for the quantity Fα(A,B) have been shown in
[3].

Theorem 3.5. [3, Theorem 8] Let A,B ∈ Pm and α ∈ (0, 1). Then

(i) Fα(A,B) = min
X∈Pm

tr
[
(1− α)(B

α−1
2α XB

α−1
2α )

α
α−1 + αXA

]
,

(ii) Fα(A,B) = min
X∈Pm

[
tr(B

α−1
2α XB

α−1
2α )

α
α−1

]1−α

[tr(XA)]
α
,

(iii) Fα(A,B) = min
X∈Pm

tr
[
αB

1−α
α X + (1− α)

(
A−1/2XA−1/2

) α
α−1

]
,

(iv) Fα(A,B) = min
X∈Pm

[
tr
(
B

1−α
α X

)]α [
tr
(
A−1/2XA−1/2

) α
α−1

]1−α

.

Corollary 3.6. Let A,B ∈ Pm and α ∈ (0, 1). Then

trTα(A
1−α|Bα) ≥ 1

1− α

[
trA1−α −K

]
,

where

K = min
{[

trA1−α
]α

[trBα]
1−α

, [trAα]
1−α [

trB1−α
]α}

.

Proof. Note that for any A,B ∈ Pm and α ∈ (0, 1)

trTα(A|B) =
1

1− α
[trA− Fα(A,B)] . (2)

Taking X = I in Theorem 3.5 (ii) yields

Fα(A,B) ≤ [trA]
α
[trB]

1−α
.

Similarly, from Theorem 3.5 (iv)

Fα(A,B) ≤
[
tr
(
A

α
1−α

)]1−α
[
tr
(
B

1−α
α

)]α
.

So it holds after replacing A and B by A1−α and Bα in (2). □

Let A = [aij ] and B = [bij ] be arbitrary matrices with certain sizes. The
tensor product (or Kronecker product) A⊗B of A and B is the matrix given by

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB

 .

One can see easily that the tensor product is bilinear and associative, but not
commutative. Moreover, it preserves the positivity: the tensor product of two
positive semi-definite (positive definite) matrices is positive semi-definite (posi-
tive definite, respectively).

Lemma 3.7. The following holds:
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(1) (A⊗B)(C⊗D) = (AC)⊗ (BD) provided the matrix multiplications are
valid,

(2) (A⊗B)s = As ⊗Bs for A,B ∈ Pm and s ∈ R.

Theorem 3.8. Let A1, A2, B1, B2 ∈ Pm and let α > 0, α ̸= 1. Then

Tα(A1 ⊗A2|B1 ⊗B2)

= (α− 1)Tα(A1|B1)⊗ Tα(A2|B2) +A1 ⊗ Tα(A2|B2) + Tα(A1|B1)⊗A2.

Proof. Let β =
1− α

2α
. Then we have from Lemma 3.7

[(B1 ⊗B2)
β(A1 ⊗A2)(B1 ⊗B2)

β ]α −A1 ⊗A2

= (Bβ
1A1B

β
1 )

α ⊗ (Bβ
2A2B

β
2 )

α −A1 ⊗A2

= [(Bβ
1A1B

β
1 )

α −A1]⊗ [(Bβ
2A2B

β
2 )

α −A2] +A1 ⊗ [(Bβ
2A2B

β
2 )

α −A2]

+ [(Bβ
1A1B

β
1 )

α −A1]⊗A2.

Thus, we obtain the desired identity. □

4. Quantum relative Rényi entropy

For any density matrices ρ and σ the quantum relative Rényi entropy of ρ
and σ is given by

Rα(ρ|σ) =
1

α− 1

[
tr
(
σ

1−α
2α ρσ

1−α
2α

)α

− 1
]

for α > 0 and α ̸= 1. Note that Rα(ρ|σ) = trTα(ρ|σ). For density matrices
ρ and τ , it can not be possible that tr(ρ + τ) ≤ 1. Thus, we do not want to
consider that whether Rα(ρ|σ) satisfies the axiom (6). Moreover, the trace of
the identity matrix is the dimension of the matrix so this is not the case with
the axiom (3) in this paper. But, from the definition of the quantum relative
Rényi entropy, we obtain that Rα(ρ|σ) is nonnegative and unitarily invariant.

Remark 4.1. The notations ⟨x| and |x⟩, known as a bra vector and a ket
vector, represent row and column vectors in Cm respectively. An important linear

functional is a bra vector obtained by a ket vector. Given |x⟩ =

 x1

...
xm

 ∈ Cm

we define a bra vector ⟨x| associated to |x⟩ by

|x⟩ 7→ ⟨x| = (x1, . . . , xm) ∈ (Cm)
∗
,

where (Cm)
∗
is a dual space of Cm. Note that for given |x⟩, |y⟩ ∈ Cm their inner

product is given by

⟨x|y⟩ = (|x⟩)∗ |y⟩ =
m∑
i=1

xiyi.
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Note that a density matrix whose eigenvalues are only 1 and 0 is called a
pure state, and the other is called a mixed state. Assume that σ is a density
matrix representing pure state. So there exist a unit vector |a⟩ in Cm such that
σ = |a⟩⟨a|. Then

σ
1−α
2α ρσ

1−α
2α = |a⟩⟨a|ρ|a⟩⟨a|,

so tr(σ
1−α
2α ρσ

1−α
2α )α = ⟨a|ρ|a⟩α. Thus,

Rα(ρ|σ) =
⟨a|ρ|a⟩α − 1

α− 1
. (3)

In addition, if ρ is also a density matrix representing pure state, say ρ = |b⟩⟨b|
for a unit vector |b⟩ in Cm, then (3) reduces to

Rα(ρ|σ) =
|⟨a|b⟩|2α − 1

α− 1
=

cos2α θ − 1

α− 1
,

where θ is the angle between two unit vectors |a⟩ and |b⟩.

Lemma 4.1. For any density matrices ρ, σ, and α ∈ (0, 1), we have Rα(ρ|σ) ≥
0.

Proof. One can see that ρ+ 1
nI, σ + 1

nI ∈ Pm for all n ∈ N. By Theorem 3.4

Rα

(
ρ+

1

n
I

∣∣∣∣σ +
1

n
I

)
= trTα

(
ρ+

1

n
I

∣∣∣∣σ +
1

n
I

)
≥ 0.

By continuity we obtain that Rα(ρ|σ) ≥ 0. □

Remark 4.2. From Theorem 3.4 we have

0 ≤ Rα(ρ|σ) ≤ tr(ρσ−1ρ)− 1

for any invertible density matrices ρ and σ.

The following hold from Theorem 3.3 together with continuity such that ρ+
1
nI → ρ as n → ∞.

Theorem 4.2. The quantum relative Rényi entropy Rα satisfies

(i) Rα(UρU∗|UσU∗) = URα(ρ|σ)U∗ for any unitary matrix U ,
(ii) Rα(ρ|σ) for α ∈ (0, 1) is convex on ρ: for any density matrices ρ1, ρ2, σ

and λ ∈ [0, 1]

Rα((1− λ)ρ1 + λρ2|σ) ≤ (1− λ)Rα(ρ1|σ) + λRα(ρ2|σ).

One can easily see that the tensor product of density matrices is again a
density matrix. We now show the subadditivity of the quantum relative Rényi
entropy under the tensor product.

Theorem 4.3. For any density operators ρ1, ρ2, σ1, σ2, and α ∈ (0, 1),

Rα(ρ1 ⊗ ρ2|σ1 ⊗ σ2) ≤ Rα(ρ1|σ1) +Rα(ρ2|σ2).
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Proof. Note that tr(A ⊗ B) = tr(A)tr(B) for any square matrices A and B.
Since Rα(ρ|σ) = trTα(ρ|σ), Theorem 3.8 and Lemma 4.1 yield

Rα(ρ1 ⊗ ρ2|σ1 ⊗ σ2) = trTα(ρ1 ⊗ ρ2|σ1 ⊗ σ2)

= (α− 1)Rα(ρ1|σ1)Rα(ρ2|σ2) +Rα(ρ2|σ2) +Rα(ρ1|σ1)

≤ Rα(ρ2|σ2) +Rα(ρ1|σ1).

□

5. Final remark and open questions

In Section 3 we introduced the relative Rényi operator entropy Tα(A|B) of
positive definite Hermitian matrices A and B for α > 0 and α ̸= 1. On the
other hand, many properties of convexity in Theorem 3.3 and boundedness in
Theorem 3.4 and Corollary 3.6 have been shown for α ∈ (0, 1). Also in Section
4 we studied the subadditivity of the quantum relative Rényi entropy Rα(ρ|σ)
of density matrices ρ and σ for α ∈ (0, 1). It is an interesting problem what
happens on consequences in this paper for the case of α ∈ (1,∞).

We have seen in Theorem 3.8 the effect of the relative Rényi operator entropy
Tα under tensor product. Note from Schur’s product theorem in [1, Lemma 4]
that the Hadamard product (or entry-wise product) of positive (semi-)definite
Hermitian matrices is again positive (semi-)definite. Indeed, there exists a
strictly positive and unital linear map Φ such that for any square matrices A,B

Φ(A⊗B) = A ◦B.

Analogous to Theorem 3.8 and Theorem 4.3, it is an interesting problem to find
the relationship between Tα(A1 ◦ A2|B1 ◦ B2) and Tα(A1|B1) ◦ Tα(A2|B2) for
positive definite Hermitian matrices A1, A2, B1, B2, also for density matrices.
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