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SOME IDENTITIES OBTAINED BY USING THE CONCEPT

OF EXPONENTIAL RIORDAN MATRICES

Ji-Hwan Jung

Abstract. In this paper, we derive the some identities which are related

to the multifactorial numbers and the Catalan numbers. We utilize the

fundamental theorem of Riordan matrix to obtain those identities.

1. Introduction

Many combinatorial counting problems can be treated systematically using
the Riordan matrix introduced by Shapiro, Getu, Woan, and Woodson [5]. In
this paper, we use some elements from the exponential version of the Riordan
matrix.

Definition 1 ([1]). An exponential Riordan matrix, also denoted as an e-
Riordan matrix is an infinite lower triangular matrix R = [rn,k]n,k≥0 whose
k-th column has the exponential generating function g(t)f(t)k/k! where g(0) ̸=
0, f(0) = 0 and f ′(0) ̸= 0. Equivalently, ℓn,k = n![tn]g(t)f(t)k/k! where
[tn]

∑
i≥0 ait

i = an. The matrix R is denoted by (g(t), f(t)).

It is known [1] that if we multiply R = (g(t), f(t)) by a column vector
v = (v0, v1, . . .)

T corresponding to the exponential generating function v(t) =∑
n≥0 vnt

n/n!, then the resulting column vector Rv = (h0, h1, . . .)
T has the

exponential generating function g(t)v(f(t)) =
∑

n≥0 hnt
n/n!. This observation

is known as the fundamental theorem of Riordan matrix (FTRM), and we write
this as

(g(t), f(t))v(z) = g(t)v(f(t)).

The importance of the e-Riordan matrix is underlined by the fact that well-
known combinatorial sequences such as the Stirling numbers of both kinds,
Lah numbers, Bessel numbers, etc. can be expressed as e-Riordan matrices.
Moreover, e-Riordan matrix methods give simple proofs of their identities. Thus
the e-Riordan matrix has been studied combinatorially [1, 2, 3].

Received December 9, 2022; Accepted January 20, 2023.

2010 Mathematics Subject Classification. 05A19, 05A15.
Key words and phrases. exponential Riordan matrix, Catalan numbers, Multifactorial

numbers.

©2023 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)

23



24 J.-H. JUNG

In this paper, we find some identities which are related to multifactorial
numbers (Theorems 2.1 and 2.2) and Catalan numbers (Corollary 2.3).

2. Main results

A common related notation is to use multiple exclamation points to denote a
multifactorial, the product of integers in steps of two (n!!), three (n!!!) or more.
The double factorial is the most commonly used variant, but one can similarly
define the triple factorial (n!!!) and so on. In general, kth factorial, denoted by
n!(k) is defined recursively as

n!(k) =

{
1 if 0 ≤ n < k;

n(n− k)!(k) if n ≥ k,
(1)

where k ∈ N. For instance, (kn+ 1)!(k) =
∏n

i=0(k(n− i) + 1) for n ∈ N.
We define the two generating functions Fm(t) and Hm(t) by

Fm(t) = 1− (1−mt)
1
m and Hm(t) = (1−mt)−

1
m .

Theorem 2.1. For n, k,m ∈ N, we have the identity

n∑
k=0

 k∑
i=0

(−1)n−i

(
k

i

) n−1∏
j=0

(i− jm)

 = (m(n− 1) + 1)!(m).

Proof. By the binomial expansion,

(Fm(t))k =
(
1− (1−mt)

1
m

)k

=

k∑
i=0

(−1)i
(
k

i

)
(1−mt)

i
m .(2)

We note that the Taylor series expansion of (1−mt)i/m at t = 0 gives

(1−mt)
i
m = 1 +

∑
n≥1

(−1)n

n−1∏
j=0

(i− jm)

 tn

n!
.(3)

Now we consider the e-Riordan matrix R = [rn,k]n,k≥0 = (1, Fm(t)). Then,
by Definition 1, rn,k = n!/k![tn](Fm(t))k. Thus, by (2) and (3),

rn,k =


1 if n = k = 0;
1
k!

∑k
i=0(−1)n−i

(
k
i

)∏n−1
j=0 (i− jm) if n ≥ k ≥ 1;

0 otherwise.

(4)

Let v = (0!, 1!, 2!, 3!, . . .)T and h = (h0, h1, h2, . . .)
T = Rv. Then hn =∑n

k=0 k!hn,k. Since the exponential generating function v(t) for v is

v(t) =
∑
n≥0

n!
tn

n!
= (1− t)−1,
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by FTRM we obtain∑
n≥0

hn
tn

n!
= (1, Fm(t))v(t) = v(Fm(t)) = (1−mt)−

1
m = Hm(t).

Therefore the Taylor series expansion of Hm(t) at t = 0 gives

Hm(t) = (1−mt)−
1
m = 1 +

∑
n≥1

n∏
j=1

(m(n− j) + 1)
tn

n!

= 1 +
∑
n≥1

(m(n− 1) + 1)!(m) t
n

n!
.

Thus hn = (m(n − 1) + 1)!(m) for n ∈ N. Since hn =
∑n

k=0 k!rn,k, we obtain
the desired result by (4). □

Remark 1. In the proof of Theorem 2.1, one can see

(1, Fm(t))



0!
1!
2!
3!
4!
...


=



1
1!(m)

(m+ 1)!(m)

(2m+ 1)!(m)

(3m+ 1)!(m)

...



=



1
1

(m+ 1)1
(2m+ 1)(m+ 1)1

(3m+ 1)(2m+ 1)(m+ 1)1
...


.

By FTRM, it also can be written as

(1, Fm(t))
1

1− t
=

1

1− Fm(t)
= Hm(t).

For instance, the first entries of Remark 1 for m = 2 are

1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 3 3 1 0 0 · · ·
0 15 15 6 1 0
0 105 105 45 10 1

...





0!
1!
2!
3!
4!
5!
...


=



1
1!!
3!!
5!!
7!!
9!!
...


=



1
1
3
15
105
945
...


. (5)
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By FTRM, we obtain

(
1, 1− (1− 2t)

1
2

) 1

1− t
= (1− 2t)−

1
2 .

The matrix which is obtained by deleting the first row and the first column of
the matrix in (5) is the coefficient matrix of the reversed Bessel polynomials.

The explicit formula for nth Catalan number Cn is Cn = 1
n+1

(
2n
n

)
and its

ordinarily generating function is

C(t) =
∑
n≥0

Cnt
n =

1−
√
1− 4t

2t
= 1 + t+ 2t2 + 5t3 + 14t4 + 42t5 + · · · .

It is known [4] that the expansion of C(t)k for k ∈ N is

C(t)k =
∑
n≥0

k

2n+ k

(
2n+ k

n

)
tn.

Theorem 2.2. For n ∈ N, we have the identity

n∑
k=0

n!k

2n−k(2n− k)

(
2n− k

n− k

)
= (2n− 1)!!.

Proof. We note that F2(t) = 1 − (1 − 2t)1/2 = tC(t/2). Let R = [rn,k]n,k≥0 =
(1, F2(t)). Then

rn,k =
n!

k!
[tn](tC(t/2))k =

n!

k!
[tn−k]C(t/2)k =

n!k

k!2n−k(2n− k)

(
2n− k

n− k

)
.

Hence, by Remark 1 for the case m = 2, we obtain

n∑
k=0

k!rn,k =

n∑
k=0

n!k

2n−k(2n− k)

(
2n− k

n− k

)
= (2n− 1)!!

for n ∈ N. □

Corollary 2.3. For n ∈ N, we have the identity

Cn =

n∑
k=1

2kk

n(n+ 1)

(
2n− k − 1

n− 1

)
.
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Proof. We note that (2n− 1)!! = (2n)!
2nn! . By Theorem 2.2, we have

(2n− 1)!! =

n∑
k=0

n!k

2n−k(2n− k)

(
2n− k

n− k

)

⇒ (2n)!

2nn!
=

n∑
k=0

k(2n− k − 1)!

2n−k(n− k)!

⇒ 1

n+ 1

(
2n

n

)
=

n∑
k=0

2kk(2n− k − 1)!

(n+ 1)!(n− k)!

⇒ Cn =

n∑
k=1

2kk

n(n+ 1)

(
2n− k − 1

n− 1

)
which completes the proof. □

Various combinatorial interpretations and identities of Catalan numbers have
been introduced. We checked whether the identity in Corollary 2.3 is on A000108
in the On-Line Encyclopedia of Integer Sequences (OEIS) [6] or not, but our
identity is not there.
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