DOI QR코드

DOI QR Code

Free vibration of deep and shallow curved FG nanobeam based on nonlocal elasticity

  • S.A.H., Hosseini (Buein Zahra Technical University) ;
  • O., Rahmani (Smart Structures and New Advanced Materials Laboratory, Department of Mechanical Engineering, University of Zanjan) ;
  • V., Refaeinejad (Smart Structures and New Advanced Materials Laboratory, Department of Mechanical Engineering, University of Zanjan) ;
  • H., Golmohammadi (Smart Structures and New Advanced Materials Laboratory, Department of Mechanical Engineering, University of Zanjan) ;
  • M., Montazeripour (Buein Zahra Technical University)
  • Received : 2021.12.11
  • Accepted : 2023.01.20
  • Published : 2023.01.25

Abstract

In this paper, the effect of deepness on in-plane free vibration behavior of a curved functionally graded (FG) nanobeam based on nonlocal elasticity theory has been investigated. Differential equations and boundary conditions have been developed based on Hamilton's principle. In order to figure out the size effect, nonlocal theory has been adopted. Properties of material vary in radial direction. By using Navier solution technique, the amount of natural frequencies has been obtained. Also, to take into account the deepness effect on vibrations, thickness to radius ratio has been considered. Differences percentage between results of cases in which deepness effect is included and excluded are obtained and influences of power-law exponent, nonlocal parameter and arc angle on these differences percentage are studied. Results show that arc angle and power law exponent parameters have the most influences on the amount of the differences percentage due to deepness effect. It has been observed that the inclusion of geometrical deep term and material distribution results in an increase in sensitivity of dimensionless natural frequency about variation of aforementioned parameters and a change in variation range of natural frequency. Finally, several numerical results of deep and shallow curved functionally graded nanobeams with different geometry dimensions are presented, which may serve as benchmark solutions for the future research in this field.

Keywords

References

  1. Ai-min, Y. and Ming, Y. (2004), "Solution of generalized coordinate for warping for naturally curved and twisted beams", Appl. Math. Mech., 25(10), 1166-1175. https://doi.org/10.1007/BF02439869.
  2. Amara, K., Tounsi, A. and Mechab, I. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Mech., 34(12), 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029.
  3. Ansari, R., Faghih Shojaei, M., Shahabodini, A. and Bazdid-Vahdati, M. (2015), "Three-dimensional bending and vibration analysis of functionally graded nanoplates by a novel differential quadrature-based approach", Compos. Struct., 131, 753-764. http://doi.org/10.1016/j.compstruct.2015.06.027.
  4. Aydogdu, M. and Arda, M. (2016), "Forced vibration of nanorods using nonlocal elasticity", Adv. Nano Res., 4(4), 265. https://doi.org/10.12989/anr.2016.4.4.265.
  5. Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393. https://doi.org/10.12989/anr.2017.5.4.393.
  6. Bastanfar, M., Hosseini, S.A., Sourki, R. and Khosravi, F. (2019), "Flexoelectric and surface effects on a cracked piezoelectric nanobeam: Analytical resonant frequency response", Arch. Mech. Eng., 66, 417. http://doi.org/10.24425/ame.2019.131355.
  7. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279. https://doi.org/10.12989/anr.2018.6.3.279.
  8. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
  9. Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7.
  10. Eltaher, M., Emam, S.A. and Mahmoud, F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. http://doi.org/10.1016/j.amc.2011.12.090.
  11. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. http://doi.org/10.1016/j.compstruct.2012.11.039.
  12. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. http://doi.org/10.1016/j.compstruct.2012.09.030.
  13. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  14. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  15. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
  16. Hajianmaleki, M. and Qatu, M.S. (2012), "Static and vibration analyses of thick, generally laminated deep curved beams with different boundary conditions", Compos. Part B: Eng., 43(4), 1767-1775. http://doi.org/10.1016/j.compositesb.2012.01.019.
  17. Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green-Naghdi via nonlocal elasticity with surface energy effects", Eur. Phys. J. Plus, 135(1), 35. http://doi.org/10.1140/epjp/s13360-019-00037-8.
  18. Hosseini, S.A. and Khosravi, F. (2020), "Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings", Adv. Nano Res., 8(1), 25. https://doi.org/10.12989/anr.2020.8.1.025.
  19. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  20. Khosravi, F. and Hosseini, S.A. (2020), "On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model", Mech. Bas. Des. Struct. Mach., 50(3), 1030-1053. https://doi.org/10.1080/15397734.2020.1744001.
  21. Khosravi, F., Hosseini, S.A. and Norouzi, H. (2020), "Exponential and harmonic forced torsional vibration of single-walled carbon nanotube in an elastic medium", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(10), 1928-1942. http://doi.org/10.1177/0954406220903341.
  22. Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020), "Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model", Eur. Phys. J. Plus, 135(2), 1-23. https://doi.org/10.1140/epjp/s13360-020-00207-z.
  23. Kurtaran, H. (2015), "Geometrically nonlinear transient analysis of thick deep composite curved beams with generalized differential quadrature method", Compos. Struct., 128, 241-250. http://doi.org/10.1016/j.compstruct.2015.03.060.
  24. Kurtaran, H. (2015), "Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method", Compos. Struct., 131, 821-831. http://doi.org/10.1016/j.compstruct.2015.06.024.
  25. Lim, C.W. (2010), "On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection", Appl. Math. Mech., 31(1), 37-54. https://doi.org/10.1007/s10483-010-0105-7.
  26. Ma, H., Gao, X.L. and Reddy, J. (2010), "A nonclassical Reddy-Levinson beam model based on a modified couple stress theory", Int. J. Multisc. Comput. Eng., 8(2), 167-180. http://doi.org/10.1615/IntJMultCompEng.v8.i2.30.
  27. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3), 305-312. http://doi.org/10.1016/S0020-7225(02)00210-0.
  28. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31. https://doi.org/10.12989/anr.2016.4.1.031.
  29. Seifoori, S. and Liaghat, G.H. (2013), "Low velocity impact of a nanoparticle on nanobeams by using a nonlocal elasticity model and explicit finite element modeling", Int. J. Mech. Sci., 69, 85-93. http://doi.org/10.1016/j.ijmecsci.2013.01.030.
  30. Simsek, M. and Yurtcu, H. (2012), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. http://doi.org/10.1016/j.compstruct.2012.10.038. 
  31. Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1. https://doi.org/10.12989/anr.2013.1.1.001.
  32. Wang, B., Deng, Z.. and Zhang, K. (2013), "Nonlinear vibration of embedded single-walled carbon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory", Appl. Math. Mech., 34, 269-280. https://doi.org/10.1007/s10483-013-1669-8.
  33. Xu, X.. and Deng, Z.. (2013), "Surface effects of adsorption-induced resonance analysis on micro/nanobeams via nonlocal elasticity", Appl. Math. Mech., 34, 37-44. http://doi.org/10.1007/s10483-013-1651-9.
  34. Ye, T., Jin, G., Ye, X. and Wang, X. (2015), "A series solution for the vibrations of composite laminated deep curved beams with general boundaries", Compos. Struct., 127, 450-465. http://doi.org/10.1016/j.compstruct.2015.03.020.
  35. Zhu, L. and Zhao, Y.. (2008), "Exact solution for warping of spatial curved beams in natural coordinates", Appl. Math. Mech., 29, 933-941. https://doi.org/10.1007/s10483-008-0712-x.
  36. Zidour, M., Benrahou, K.H., Semmah, A., Naceri, M., Belhadj, H.A., Bakhti, K. and Tounsi, A. (2012), "The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory", Comput. Mater. Sci., 51(1), 252-260. http://doi.org/10.1016/j.commatsci.2011.07.021.