DOI QR코드

DOI QR Code

Primary somatosensory cortex and periaqueductal gray functional connectivity as a marker of the dysfunction of the descending pain modulatory system in fibromyalgia

  • Matheus, Soldatelli (School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS)) ;
  • Alvaro, de Oliveira Franco (Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA)) ;
  • Felipe, Picon (Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA)) ;
  • Juliana Avila, Duarte (Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS)) ;
  • Ricardo, Scherer (Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA)) ;
  • Janete, Bandeira (Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA)) ;
  • Maxciel, Zortea (Laboratory of Pain and Neuromodulation at Hospital de Clínicas de Porto Alegre (HCPA)) ;
  • Iraci Lucena, da Silva Torres (Laboratory of Pharmacology in Pain and Neuromodulation: Pre-clinical Investigations, Experimental Research Center, HCPA) ;
  • Felipe, Fregni (Pain and Palliative Care Service, HCPA) ;
  • Wolnei, Caumo (Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS))
  • Received : 2022.07.04
  • Accepted : 2022.11.09
  • Published : 2023.01.01

Abstract

Background: Resting-state functional connectivity (rs-FC) may aid in understanding the link between painmodulating brain regions and the descending pain modulatory system (DPMS) in fibromyalgia (FM). This study investigated whether the differences in rs-FC of the primary somatosensory cortex in responders and non-responders to the conditioned pain modulation test (CPM-test) are related to pain, sleep quality, central sensitization, and the impact of FM on quality of life. Methods: This cross-sectional study included 33 females with FM. rs-FC was assessed by functional magnetic resonance imaging. Change in the numerical pain scale during the CPM-test assessed the DPMS function. Subjects were classified either as non-responders (i.e., DPMS dysfunction, n = 13) or responders (n = 20) to CPM-test. A generalized linear model (GLM) and a receiver operating characteristic (ROC) curve analysis were performed to check the accuracy of the rs-FC to differentiate each group. Results: Non-responders showed a decreased rs-FC between the left somatosensory cortex (S1) and the periaqueductal gray (PAG) (P < 0.001). The GLM analysis revealed that the S1-PAG rs-FC in the left-brain hemisphere was positively correlated with a central sensitization symptom and negatively correlated with sleep quality and pain scores. ROC curve analysis showed that left S1-PAG rs-FC offers a sensitivity and specificity of 85% or higher (area under the curve, 0.78, 95% confidence interval, 0.63-0.94) to discriminate who does/does not respond to the CPM-test. Conclusions: These results support using the rs-FC patterns in the left S1-PAG as a marker for predicting CPM-test response, which may aid in treatment individualization in FM patients.

Keywords

Acknowledgement

The following Brazilian funding agencies supported the present research: 1. Committee for the Development of Higher Education Personnel-CAPES (PROEX). To Wolnei Caumo. 2. National Council for Scientific and Technological Development - CNPq (grant to WC number: 420826/2018-1; 302688/2017-0). 3. Postgraduate Research Group at the Hospital de Clinicas de Porto Alegre, to Wolnei Caumo (FIPE, project number 2018-0353). 4. Foundation for the Support of Research at the Rio Grande do Sul (FAPERGS)Array of state of Rio Grande do Sul, Brazil (SEARS) n. 03/2017 (PPSUS), to Wolnei Caumo. number: 17/2551-0001. 5. Brazilian Innovation Agency (FINEP [Financiadora de Estudos e Projetos]); process number 1245/13 to Iraci LS Torres and Wolnei Caumo). Wolnei Caumo agrees to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

References

  1. Sawaddiruk P, Paiboonworachat S, Chattipakorn N, Chattipakorn SC. Alterations of brain activity in fibromyalgia patients. J Clin Neurosci 2017; 38: 13-22. https://doi.org/10.1016/j.jocn.2016.12.014
  2. Cagnie B, Coppieters I, Denecker S, Six J, Danneels L, Meeus M. Central sensitization in fibromyalgia? A systematic review on structural and functional brain MRI. Semin Arthritis Rheum 2014; 44: 68-75. https://doi.org/10.1016/j.semarthrit.2014.01.001
  3. Bidari A, Ghavidel Parsa B, Ghalehbaghi B. Challenges in fibromyalgia diagnosis: from meaning of symptoms to fibromyalgia labeling. Korean J Pain 2018; 31: 147-54. https://doi.org/10.3344/kjp.2018.31.3.147
  4. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005; 9: 463-84. https://doi.org/10.1016/j.ejpain.2004.11.001
  5. Coulombe MA, Erpelding N, Kucyi A, Davis KD. Intrinsic functional connectivity of periaqueductal gray subregions in humans. Hum Brain Mapp 2016; 37: 1514-30. https://doi.org/10.1002/hbm.23117
  6. Coulombe MA, Lawrence KS, Moulin DE, Morley-Forster P, Shokouhi M, Nielson WR, et al. Lower functional connectivity of the periaqueductal gray is related to negative affect and clinical manifestations of fibromyalgia. Front Neuroanat 2017; 11: 47. https://doi.org/10.3389/fnana.2017.00047
  7. Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. J Clin Invest 2010; 120: 3779-87. https://doi.org/10.1172/JCI43766
  8. Staud R. Abnormal pain modulation in patients with spatially distributed chronic pain: fibromyalgia. Rheum Dis Clin North Am 2009; 35: 263-74. https://doi.org/10.1016/j.rdc.2009.05.006
  9. Yarnitsky D, Bouhassira D, Drewes AM, Fillingim RB, Granot M, Hansson P, et al. Recommendations on practice of conditioned pain modulation (CPM) testing. Eur J Pain 2015; 19: 805-6. https://doi.org/10.1002/ejp.605
  10. Kennedy DL, Kemp HI, Ridout D, Yarnitsky D, Rice ASC. Reliability of conditioned pain modulation: a systematic review. Pain 2016; 157: 2410-9. https://doi.org/10.1097/j.pain.0000000000000689
  11. Soldatelli MD, Siepmann T, Illigens BM, Souza Dos Santos V, Lucena da S Torres I, Fregni F, et al. Mapping of predictors of the disengagement of the descending inhibitory pain modulation system in fibromyalgia: an exploratory study. Br J Pain 2021; 15: 221-33. https://doi.org/10.1177/2049463720920760
  12. Caumo W, Antunes LC, Elkfury JL, Herbstrith EG, Busanello Sipmann R, Souza A, et al. The Central Sensitization Inventory validated and adapted for a Brazilian population: psychometric properties and its relationship with brain-derived neurotrophic factor. J Pain Res 2017; 10: 2109-22. https://doi.org/10.2147/JPR.S131479
  13. Baliki MN, Mansour AR, Baria AT, Apkarian AV. Functional reorganization of the default mode network across chronic pain conditions. PLoS One 2014; 9: e106133. https://doi.org/10.1371/journal.pone.0106133
  14. Wolfe F, Clauw DJ, Fitzcharles MA, Goldenberg DL, Hauser W, Katz RL, et al. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin Arthritis Rheum 2016; 46: 319-29. https://doi.org/10.1016/j.semarthrit.2016.08.012
  15. Soper, DS. Post-hoc Statistical Power Calculator for Hierarchical Multiple Regression [Software]. 2022. Available from: https://www.danielsoper.com/statcalc.
  16. Gomes-Oliveira MH, Gorenstein C, Lotufo Neto F, Andrade LH, Wang YP. Validation of the Brazilian Portuguese version of the Beck Depression Inventory-II in a community sample. Braz J Psychiatry 2012; 34: 389-94. https://doi.org/10.1016/j.rbp.2012.03.005
  17. Sehn F, Chachamovich E, Vidor LP, Dall-Agnol L, de Souza IC, Torres IL, et al. Cross-cultural adaptation and validation of the Brazilian Portuguese version of the pain catastrophizing scale. Pain Med 2012; 13: 1425-35. https://doi.org/10.1111/j.1526-4637.2012.01492.x
  18. Kaipper MB, Chachamovich E, Hidalgo MP, Torres IL, Caumo W. Evaluation of the structure of Brazilian State-Trait Anxiety Inventory using a Rasch psychometric approach. J Psychosom Res 2010; 68: 223-33. https://doi.org/10.1016/j.jpsychores.2009.09.013
  19. Bertolazi AN, Fagondes SC, Hoff LS, Dartora EG, Miozzo IC, de Barba ME, et al. Validation of the Brazilian Portuguese version of the Pittsburgh Sleep Quality Index. Sleep Med 2011; 12: 70-5. https://doi.org/10.1016/j.sleep.2010.04.020
  20. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2012; 2: 125-41. https://doi.org/10.1089/brain.2012.0073
  21. Bastos AM, Schoffelen JM. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci 2016; 9: 175.
  22. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 2007; 37: 90-101. https://doi.org/10.1016/j.neuroimage.2007.04.042
  23. Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL. Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med Image Comput Comput Assist Interv 2006; 9(Pt 2): 58-66. https://doi.org/10.1007/11866763_8
  24. Makris N, Goldstein JM, Kennedy D, Hodge SM, Caviness VS, Faraone SV, et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res 2006; 83: 155-71. https://doi.org/10.1016/j.schres.2005.11.020
  25. Tseng MT, Kong Y, Eippert F, Tracey I. Determining the neural substrate for encoding a memory of human pain and the influence of anxiety. J Neurosci 2017; 37: 11806-17. https://doi.org/10.1523/JNEUROSCI.0750-17.2017
  26. Sours C, Alon G, Roys S, Gullapalli RP. Modulation of resting state functional connectivity of the motor network by transcranial pulsed current stimulation. Brain Connect 2014; 4: 157-65. https://doi.org/10.1089/brain.2013.0196
  27. Tan Y, Wu X, Chen J, Kong L, Qian Z. Structural and functional connectivity between the amygdala and orbital frontal cortex in burning mouth syndrome: an fMRI study. Front Psychol 2019; 10: 1700. https://doi.org/10.3389/fpsyg.2019.01700
  28. Sevel LS, Craggs JG, Price DD, Staud R, Robinson ME. Placebo analgesia enhances descending painrelated effective connectivity: a dynamic causal modeling study of endogenous pain modulation. J Pain 2015; 16: 760-8. https://doi.org/10.1016/j.jpain.2015.05.001
  29. Lopez-Sola M, Woo CW, Pujol J, Deus J, Harrison BJ, Monfort J, et al. Towards a neurophysiological signature for fibromyalgia. Pain 2017; 158: 34-47. https://doi.org/10.1097/j.pain.0000000000000707
  30. Hazlett EA, Buchsbaum MS, Zhang J, Newmark RE, Glanton CF, Zelmanova Y, et al. Frontal-striatalthalamic mediodorsal nucleus dysfunction in schizophrenia-spectrum patients during sensorimotor gating. Neuroimage 2008; 42: 1164-77. https://doi.org/10.1016/j.neuroimage.2008.05.039
  31. Schreiber KL, Loggia ML, Kim J, Cahalan CM, Napadow V, Edwards RR. Painful after-sensations in fibromyalgia are linked to catastrophizing and differences in brain response in the medial temporal lobe. J Pain 2017; 18: 855-67. https://doi.org/10.1016/j.jpain.2017.02.437
  32. Schmidt-Wilcke T, Ichesco E, Hampson JP, Kairys A, Peltier S, Harte S, et al. Resting state connectivity correlates with drug and placebo response in fibromyalgia patients. Neuroimage Clin 2014; 6: 252-61. https://doi.org/10.1016/j.nicl.2014.09.007
  33. Manning J, Reynolds G, Saygin ZM, Hofmann SG, Pollack M, Gabrieli JD, et al. Altered resting-state functional connectivity of the frontal-striatal reward system in social anxiety disorder. PLoS One 2015; 10: e0125286. https://doi.org/10.1371/journal.pone.0125286
  34. Marques AP, Santos AMB, Assumpcao A, Matsutani LA, Lage LV, Pereira CAB. [Validation of the Brazilian version of the Fibromyalgia Impact Questionnaire (FIQ)]. Rev Bras Reumatol 2006; 46: 24-31. Portuguese. https://doi.org/10.1590/S0482-50042006000100006
  35. Schestatsky P, Stefani LC, Sanches PR, Silva Junior DP, Torres IL, Dall-Agnol L, et al. Validation of a Brazilian quantitative sensory testing (QST) device for the diagnosis of small fiber neuropathies. Arq Neuropsiquiatr 2011; 69: 943-8. https://doi.org/10.1590/S0004-282X2011000700019
  36. Botelho LM, Morales-Quezada L, Rozisky JR, Brietzke AP, Torres IL, Deitos A, et al. A framework for understanding the relationship between descending pain modulation, motor corticospinal, and neuroplasticity regulation systems in chronic myofascial pain. Front Hum Neurosci 2016; 10: 308. https://doi.org/10.3389/fnhum.2016.00308
  37. Amorim P. [Mini International Neuropsychiatric Interview (MINI): validation of a short structured diagnostic psychiatric interview]. Braz J Psychiatry 2000; 22: 106-15. Portuguese. https://doi.org/10.1590/S1516-44462000000300003
  38. Hemington KS, Coulombe MA. The periaqueductal gray and descending pain modulation: why should we study them and what role do they play in chronic pain? J Neurophysiol 2015; 114: 2080-3. https://doi.org/10.1152/jn.00998.2014
  39. Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 2010; 62: 2545-55. https://doi.org/10.1002/art.27497
  40. Cook DB, Stegner AJ, McLoughlin MJ. Imaging pain of fibromyalgia. Curr Pain Headache Rep 2007; 11: 190-200. https://doi.org/10.1007/s11916-007-0190-8
  41. Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum 2002; 46: 1333-43. https://doi.org/10.1002/art.10225
  42. Cardinal TM, Antunes LC, Brietzke AP, Parizotti CS, Carvalho F, De Souza A, et al. Differential neuroplastic changes in fibromyalgia and depression indexed by up-regulation of motor cortex inhibition and disinhibition of the descending pain system: an exploratory study. Front Hum Neurosci 2019; 13: 138. https://doi.org/10.3389/fnhum.2019.00138
  43. Davis KD, Moayedi M. Central mechanisms of pain revealed through functional and structural MRI. J Neuroimmune Pharmacol 2013; 8: 518-34. https://doi.org/10.1007/s11481-012-9386-8
  44. Donadel DG, Zortea M, Torres ILS, Fregni F, Caumo W. The mapping of cortical activation by near-infrared spectroscopy might be a biomarker related to the severity of fibromyalgia symptoms. Sci Rep 2021; 11: 15754. Erratum in: Sci Rep 2021; 11: 21257.
  45. Ji G, Neugebauer V. Hemispheric lateralization of pain processing by amygdala neurons. J Neurophysiol 2009; 102: 2253-64. https://doi.org/10.1152/jn.00166.2009
  46. Agcaoglu O, Miller R, Mayer AR, Hugdahl K, Calhoun VD. Lateralization of resting state networks and relationship to age and gender. Neuroimage 2015; 104: 310-25. Erratum in: Neuroimage 2018; 167: 504. https://doi.org/10.1016/j.neuroimage.2017.10.025
  47. Galambos A, Szabo E, Nagy Z, Edes AE, Kocsel N, Juhasz G, et al. A systematic review of structural and functional MRI studies on pain catastrophizing. J Pain Res 2019; 12: 1155-78. https://doi.org/10.2147/JPR.S192246
  48. Lazaridou A, Kim J, Cahalan CM, Loggia ML, Franceschelli O, Berna C, et al. Effects of cognitive-behavioral therapy (CBT) on brain connectivity supporting catastrophizing in fibromyalgia. Clin J Pain 2017; 33: 215-21. https://doi.org/10.1097/ajp.0000000000000422
  49. Cook DB, Lange G, Ciccone DS, Liu WC, Steffener J, Natelson BH. Functional imaging of pain in patients with primary fibromyalgia. J Rheumatol 2004; 31: 364-78.
  50. Gasparin A, Zortea M, Dos Santos VS, Carvalho F, Torres ILS, de Souza A, et al. Brain-derived neurotrophic factor modulates the effect of sex on the descending pain modulatory system in healthy volunteers. Pain Med 2020; 21: 2271-9. https://doi.org/10.1093/pm/pnaa027