DOI QR코드

DOI QR Code

Promotion of 3T3 and HDF Cell Migration by Gelatin-modified Fibroin Microspheres

  • Se Change Kwon (SG Medical) ;
  • Won Hur (Department of Biotech & Bioengineering, Kangwon National University)
  • Received : 2023.02.23
  • Accepted : 2023.03.09
  • Published : 2023.04.10

Abstract

The goal of this study was to use gelatin to modify the surface of fibroin microspheres to enhance their biofunctionality for tissue engineering and regenerative medicine applications. Three different methods were used for the modification: coating, incorporation, and covalent bonding. Wound-healing assays demonstrated that gelatin modification of fibroin microspheres enhances 3T3 and HDF cell migration. Although the level of gelatin coverage varied depending on the method used, there was no significant difference between the modified microspheres. The gelatin-modified microspheres also increased the migration velocity of individual 3T3 cells. The results suggest that gelatin modification of fibroin microspheres is a promising approach for developing functional biomaterials with enhanced biological properties. Further optimization of gelatin modification is necessary to maximize the biofunctionality of fibroin microspheres.

Keywords

Acknowledgement

This study has been worked with the support of a research grant of Kangwon National University in 2021 and the National Research Foundation of Korea (NRF-2016R1D1A1B01011660).

References

  1. M. C. Gomez-Guillen, B. Gimenez, M. A. Lopez-Caballero, and M. P. Montero, Functional and bioactive properties of collagen and gelatin from alternative sources: A review, Food Hydrocoll., 25, 1813-1827 (2011). https://doi.org/10.1016/j.foodhyd.2011.02.007
  2. M. E. Hoque, T. Nuge, T. K. Yeow, N. Nordin, and R. G. S. V. Prasad, Gelatin based scaffolds for tissue engineering-a review, Polym. Res. J., 9, 15-32 (2015).
  3. X. Li, J. Xie, X. Yuan, and Y Xia, Y. Coating electrospun poly (ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering, Langmuir, 24, 14145-14150 (2008). https://doi.org/10.1021/la802984a
  4. Y. L. Cui, X. Hou, A. D. Qi, X. H. Wang, H. Wang, K. Y. Cai, Y. J. Yin, and K. D. Yao, Biomimetic surface modification of poly (L-lactic acid) with gelatin and its effects on articular chondrocytes in vitro, J. Biomed. Mater. Res. A, 66, 770-778 (2003).
  5. C. H. Chen, M. Y. Lee, V. B. H. Shyu, Y. C. Chen, C. T. Chen, and J. P. Chen, Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering, Mater. Sci. Eng. C, 40, 389-397 (2014). https://doi.org/10.1016/j.msec.2014.04.029
  6. T. P. Nguyen, Q. V. Nguyen, V. H. Nguyen, T. H. Le, V. Q. N. Huynh, D. V. N. Vo, Q. T. Trinh, S. Y. Kim and Q. V. Le, Silk fibroin-based biomaterials for biomedical applications: A review, Polymers, 11, 1933-1958 (2019). https://doi.org/10.3390/polym11121933
  7. C. Z. Zhou, F, Confalonieri, M. Jacquet, R. Perasso, Z. G. Li, and J. Janin, Silk fibroin: structural implications of a remarkable amino acid sequence, Proteins Struct. Funct. Bioinf., 44, 119-122 (2001). https://doi.org/10.1002/prot.1078
  8. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. H. Lu, J. Richmond, and D. L. Kaplan, Silk-based biomaterials, Biomaterials, 24, 401-416 (2003). https://doi.org/10.1016/S0142-9612(02)00353-8
  9. C. Vepari and D. J. Kaplan, Silk as a biomaterial, Prog. Polym. Sci., 32, 991-1007 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.013
  10. K. Su, and C. Wang, Recent advances in the use of gelatin in biomedical research, Biotechnol. Lett., 37, 2139-2145 (2015). https://doi.org/10.1007/s10529-015-1907-0
  11. H. S. Jeon, J. S. Lee, and W. Hur, Enzymatic conjugation of RGD peptides on the surface of fibroin microspheres, Appl. Chem. Eng., 31, 67-72 (2020). https://doi.org/10.14478/ace.2019.1110
  12. L. G. Rodriguez, X. Wu, and J. L. Guan, Wound-healing assay. In: C. M. Wells and M. Parsons (eds.). Cell Migration: Developmental Methods and Protocols, 23-29, The Humana Press, NJ, USA (2005).
  13. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9, 671-675 (2012). https://doi.org/10.1038/nmeth.2089
  14. A. Krishan, and R. M. Hamelik, Click-iT proliferation assay with improved DNA histograms, Curr. Protoc. Cytom., 52, 7-36 (2010).
  15. F. P. Cordelieres, V. Petit, M. Kumasaka, O. Debeir, V. Letort, S. J. Gallagher, and L. Larue, Automated cell tracking and analysis in phase-contrast videos (iTrack4U): development of Java software based on combined mean-shift processes, PloS one, 8, e81266 (2013).
  16. Z. Kang, Y. Wang, J. Xu, G. Song, M. Ding, H. Zhao, and J. Wang, An RGD-containing peptide derived from wild silkworm silk fibroin promotes cell adhesion and spreading, Polymers, 10, 1193-1206 (2018). https://doi.org/10.3390/polym10111193
  17. I. Adipurnama, M. C. Yang, T. Ciach, and B. Butruk-Raszeja, Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: A review, Biomater. Sci., 5, 22-37 (2017). https://doi.org/10.1039/C6BM00618C
  18. S. Gautam, C. F. Chou, A. K. Dinda, P. D. Potdar, and N. C. Mishra, Surface modification of nanofibrous polycaprolactone/ gelatin composite scaffold by collagen type I grafting for skin tissue engineering, Mater. Sci. Eng. C, 34, 402-409 (2014). https://doi.org/10.1016/j.msec.2013.09.043