DOI QR코드

DOI QR Code

Relationship between Concentration and Performance of Supporting Electrolyte of Redox Flow Battery Using Polyoxometalate

Polyoxometalate를 이용한 레독스 흐름전지의 지지 전해질 농도와 성능의 관계

  • Yong Jin Cho (Department of Chemical Engineering, Kangwon National University) ;
  • Byeong Wan Kwon (Department of Chemical Engineering, Kangwon National University)
  • 조용진 (강원대학교(삼척캠퍼스) 화학공학전공) ;
  • 권병완 (강원대학교(삼척캠퍼스) 화학공학전공)
  • Received : 2023.01.30
  • Accepted : 2023.03.09
  • Published : 2023.04.10

Abstract

Herein we present a tested aqueous based redox flow battery (RFB) that employs phosphomolybdic acid and ferrocyanide as the negative and positive active species in an aqueous sodium hydroxide solution. The different concentrations of NaOH solution, such as 1.0, 1.2, 1.4, 1.5, and 1.6 M, were prepared for checking the electrochemical properties and stability. The NaOH concentration as a supporting electrolyte in the negative species appears to play an important role in the electrochemical properties of phosphomolybdic acid. Moreover, the optimum value of the concentration is necessary for the best performance. The resistance of the electrolyte decreased with increasing the concentration up to 1.5 M and then increased to 1.6 M. Hence, the decrease in electrolyte resistance appears to greatly influence the energy efficiency, which is improved by increasing the concentration of NaOH. In addition, the 1.5 M NaOH solution appears to be the concentration required for optimum performance.

본 연구에서는 음극 활물질로 폴리옥소메탈에이트(polyoxometalate, POM)인 포스포몰리브 산(phosphomolybdic acid)와 양극 활물질로 페로시아나이드(ferrocyanide)를 지지 전해질인 수산화나트륨 수용액을 이용하여 산화환원 흐름 전지(redox flow battery, RFB)를 구성하였다. 다양한 농도의 수산화나트륨 수용액(1.0 M, 1.2 M, 1.4 M, 1.5 M, 1.6 M)을 이용하여 배터리의 성능테스트를 진행하였으며, 각 물질에 대한 전기화학적 특성과 안정성에 대해 연구하였다. 지지 전해질의 농도는 음극 활물질인 포스포몰리브 산에 영향을 주며 최적 값이 존재하고 농도가 증가할수록 전해질 저항이 줄어들게 되며 1.5 M에서 가장 줄어드는 현상을 확인하였고 1.6 M로 농도가 증가할 시 전해질 저항이 다시 증가한다는 것을 확인하였다. 전해질 저항의 감소는 전체 에너지 효율에도 영향을 주어 농도가 증가됨에 따라 효율은 증가하며 1.5 M에서 가장 좋은 배터리 성능을 보인다는 것을 확인하였다.

Keywords

Acknowledgement

이 논문은 2020년도 강원대학교 대학회계 학술연구조성비와 정부(교육부)의 재원으로 한국연구재단의 지원(No.2021R1l1A3060236)에 의하여 연구하였음.

References

  1. S. Wang, K. A. Owusu, L. Mai, Y. Ke, Y. Zhou, P. Hu, S. Magdassi, and Y. Long, Vanadium dioxide for energy conservation and energy storage applications: Synthesis and performance improvement, Appl. Energy, 211, 200-217 (2018). https://doi.org/10.1016/j.apenergy.2017.11.039
  2. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev., 111, 3577-3613 (2011). https://doi.org/10.1021/cr100290v
  3. A. Lucas and S. Chondrogiannis, Smart grid energy storage controller for frequency regulation and peak shaving, using a vanadium redox flow battery, Int. J. Electr. Power Energy Syst., 80, 26-36 (2016). https://doi.org/10.1016/j.ijepes.2016.01.025
  4. K. Lee, J. Choi, and J. Lee, Research trend on performance diagnosis and restoration technology of waste lithium ion battery for energy storage systems, Appl. Chem. Eng., 30, 290-296 (2019). https://doi.org/10.14478/ACE.2019.1034
  5. P. Alotto, M. Guarnieri, F. Moro, Redox flow batteries for the storage of renewable energy: A review, Renew. Sust. Energ. Rev., 29, 325-335 https://doi.org/10.1016/j.rser.2013.08.001
  6. B. Hwang and K. Kim, Redox pairs in redox flow batteries, J. the Korean Electrochem. Soc., 16, 99-110 (2013). https://doi.org/10.5229/JKES.2013.16.3.99
  7. H. Lee, D. Kim, C. Kim, and T. Kim, A study on the electrochemical performance of Fe-V chloric/sulfuric mixed acid redox flow battery depending on electrode activation temperature, Appl. Chem. Eng., 31, 639-645 (2020).
  8. D. Park, K. Jeon, C. Ryu, and G. Hwang, Performance of the all-vanadium redox flow battery stack, J. Ind. Eng. Chem., 45, 387-390 (2017). https://doi.org/10.1016/j.jiec.2016.10.007
  9. S. Xiao, L. Yu, L. Wu, L. Liu, X. Qiu, and J. Xi, Broad temperature adaptability of vanadium redox flow battery-Part 1: Electrolyte research, Electrochim. Acta, 187, 525-534 (2016). https://doi.org/10.1016/j.electacta.2015.11.062
  10. Y. Zhao, L. Liu, X. Qiu, and J. Xi, Revealing sulfuric acid concentration impact on comprehensive performance of vanadium electrolytes and flow batteries, Electrochim. Acta, 303, 21-31 (2019). https://doi.org/10.1016/j.electacta.2019.02.062
  11. Y. Liu, J. Zhang, S. Lu, and Y. Xiang, Polyoxometalate-based electrolyte materials in redox flow batteries: Current trends and emerging opportunities, Materials Reports: Energy, 2, 100094 (2022).
  12. M. R. Horn, A. Singh, S. Alomari, S. Goberna-Ferron, R. BenagesVilau, Nilesh Chodankar, Nunzio Motta, Kostya (Ken) Ostrikov, Jennifer MacLeod, Prashant Sonar, Pedro Gomez-Romero, and Deepak Dubal, Polyoxometalates (POMs): From electroactive clusters to energy materials, Energy Environ. Sci., 14, 1621-2506 (2021). https://doi.org/10.1039/D1EE90019F
  13. Q. Li, L. Zhang, J. Dai, H. Tang, Q. Li, H. Xue, and H. Pang, Polyoxometalate-based materials for advanced electrochemical energy conversion and storage, Chem. Eng. J., 351, 441-461 (2018). https://doi.org/10.1016/j.cej.2018.06.074
  14. M. Yang and B. Choi, Nanohybridization of polyoxometalate and nanomaterials for electrochemical application, Appl. Chem. Eng., 29, 363-368 (2018). https://doi.org/10.14478/ACE.2018.1069
  15. M. Sadakane and E. Steckhan, Electrochemical properties of polyoxometalates as electrocatalyst, Chem. Rev., 98, 219-237 (1998). https://doi.org/10.1021/cr960403a
  16. W. Choi, D. Im, M. S. Park, Y.-G. Ryu, S. S. Hwang, Y. S. Kim, H. Kim, S.-G. Doo, and H. Chang, Keggin-type Polyoxometalates as bidirectional redox mediators for rechargeable batteries, Electrochemistry, 84, 882-886 (2016). https://doi.org/10.5796/electrochemistry.84.882
  17. H. D. Pratt III, N. S. Hudak, X. Fang, and T. M. Anderson, A polyoxometalate flow battery, J. Power Sources, 236, 259-264 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.056
  18. Y. Han, J. Lan, K. Li, L. Yang, C. Zhu, and J. Chen, The Cluster design and redox behavior characterization of polyoxometalates for redox flow batteries, Chem. Asian J., 17, 1-14 (2022).
  19. S. Jeong, L. Kim, Y. Kwon, S. Kim, Effect of nafion membrane thickness on performance of vanadium redox flow battery, Korean J. Chem. Eng., 31, 2081-2087 (2014).  https://doi.org/10.1007/s11814-014-0157-5