Acknowledgement
이 논문은 2020년도 강원대학교 대학회계 학술연구조성비와 정부(교육부)의 재원으로 한국연구재단의 지원(No.2021R1l1A3060236)에 의하여 연구하였음.
References
- S. Wang, K. A. Owusu, L. Mai, Y. Ke, Y. Zhou, P. Hu, S. Magdassi, and Y. Long, Vanadium dioxide for energy conservation and energy storage applications: Synthesis and performance improvement, Appl. Energy, 211, 200-217 (2018). https://doi.org/10.1016/j.apenergy.2017.11.039
- Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev., 111, 3577-3613 (2011). https://doi.org/10.1021/cr100290v
- A. Lucas and S. Chondrogiannis, Smart grid energy storage controller for frequency regulation and peak shaving, using a vanadium redox flow battery, Int. J. Electr. Power Energy Syst., 80, 26-36 (2016). https://doi.org/10.1016/j.ijepes.2016.01.025
- K. Lee, J. Choi, and J. Lee, Research trend on performance diagnosis and restoration technology of waste lithium ion battery for energy storage systems, Appl. Chem. Eng., 30, 290-296 (2019). https://doi.org/10.14478/ACE.2019.1034
- P. Alotto, M. Guarnieri, F. Moro, Redox flow batteries for the storage of renewable energy: A review, Renew. Sust. Energ. Rev., 29, 325-335 https://doi.org/10.1016/j.rser.2013.08.001
- B. Hwang and K. Kim, Redox pairs in redox flow batteries, J. the Korean Electrochem. Soc., 16, 99-110 (2013). https://doi.org/10.5229/JKES.2013.16.3.99
- H. Lee, D. Kim, C. Kim, and T. Kim, A study on the electrochemical performance of Fe-V chloric/sulfuric mixed acid redox flow battery depending on electrode activation temperature, Appl. Chem. Eng., 31, 639-645 (2020).
- D. Park, K. Jeon, C. Ryu, and G. Hwang, Performance of the all-vanadium redox flow battery stack, J. Ind. Eng. Chem., 45, 387-390 (2017). https://doi.org/10.1016/j.jiec.2016.10.007
- S. Xiao, L. Yu, L. Wu, L. Liu, X. Qiu, and J. Xi, Broad temperature adaptability of vanadium redox flow battery-Part 1: Electrolyte research, Electrochim. Acta, 187, 525-534 (2016). https://doi.org/10.1016/j.electacta.2015.11.062
- Y. Zhao, L. Liu, X. Qiu, and J. Xi, Revealing sulfuric acid concentration impact on comprehensive performance of vanadium electrolytes and flow batteries, Electrochim. Acta, 303, 21-31 (2019). https://doi.org/10.1016/j.electacta.2019.02.062
- Y. Liu, J. Zhang, S. Lu, and Y. Xiang, Polyoxometalate-based electrolyte materials in redox flow batteries: Current trends and emerging opportunities, Materials Reports: Energy, 2, 100094 (2022).
- M. R. Horn, A. Singh, S. Alomari, S. Goberna-Ferron, R. BenagesVilau, Nilesh Chodankar, Nunzio Motta, Kostya (Ken) Ostrikov, Jennifer MacLeod, Prashant Sonar, Pedro Gomez-Romero, and Deepak Dubal, Polyoxometalates (POMs): From electroactive clusters to energy materials, Energy Environ. Sci., 14, 1621-2506 (2021). https://doi.org/10.1039/D1EE90019F
- Q. Li, L. Zhang, J. Dai, H. Tang, Q. Li, H. Xue, and H. Pang, Polyoxometalate-based materials for advanced electrochemical energy conversion and storage, Chem. Eng. J., 351, 441-461 (2018). https://doi.org/10.1016/j.cej.2018.06.074
- M. Yang and B. Choi, Nanohybridization of polyoxometalate and nanomaterials for electrochemical application, Appl. Chem. Eng., 29, 363-368 (2018). https://doi.org/10.14478/ACE.2018.1069
- M. Sadakane and E. Steckhan, Electrochemical properties of polyoxometalates as electrocatalyst, Chem. Rev., 98, 219-237 (1998). https://doi.org/10.1021/cr960403a
- W. Choi, D. Im, M. S. Park, Y.-G. Ryu, S. S. Hwang, Y. S. Kim, H. Kim, S.-G. Doo, and H. Chang, Keggin-type Polyoxometalates as bidirectional redox mediators for rechargeable batteries, Electrochemistry, 84, 882-886 (2016). https://doi.org/10.5796/electrochemistry.84.882
- H. D. Pratt III, N. S. Hudak, X. Fang, and T. M. Anderson, A polyoxometalate flow battery, J. Power Sources, 236, 259-264 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.056
- Y. Han, J. Lan, K. Li, L. Yang, C. Zhu, and J. Chen, The Cluster design and redox behavior characterization of polyoxometalates for redox flow batteries, Chem. Asian J., 17, 1-14 (2022).
- S. Jeong, L. Kim, Y. Kwon, S. Kim, Effect of nafion membrane thickness on performance of vanadium redox flow battery, Korean J. Chem. Eng., 31, 2081-2087 (2014). https://doi.org/10.1007/s11814-014-0157-5