DOI QR코드

DOI QR Code

Preparation and Characterization of Casein Nanoparticles with Various Metal Ions as Drug Delivery Systems

다양한 금속 이온을 이용한 카세인 단백질 나노입자 형성 및 약물 전달체 특성 연구

  • Minju Kim (Department of Biochemistry, Chungnam National University) ;
  • Seulgi Lee (Department of Biochemistry, Chungnam National University) ;
  • Joon Sig Choi (Department of Biochemistry, Chungnam National University)
  • Received : 2023.01.05
  • Accepted : 2023.02.04
  • Published : 2023.04.10

Abstract

Casein is a milk protein and one of the most important nutrients in milk. The composition is over 80% in cow's milk and about 20~45% in human's milk. Casein is highly biocompatible and biodegradable, so it has been studied for various biomedical materials applications as well as drug delivery systems. It is widely known that casein can be prepared as nanoparticles in the presence of the Ca2+ metal ion. Because casein is amphiphilic, hydrophobic drugs could be loaded inside to form a protein-based drug delivery system. In this study, we studied the optimum conditions for casein nanoparticle formation using natural metal ions present in the body, such as calcium, magnesium, zinc, and iron. It was confirmed that nanoparticles have a uniform size of around 150 nm and negative zeta potential values. In addition, it was demonstrated that casein nanoparticles have a cell viability of more than 80% and efficient intracellular uptake properties using confocal microscopy. From the results, it was also shown that the casein nanoparticles prepared using various metal ions have the potential to be biocompatible drug delivery carriers.

카세인(casein)은 포유류의 우유에서 발견되는 단백질로 우유에서는 80% 이상 함유되어 있다. 사람의 모유에는 약 20~45%가 포함되어 있으며 생체 적합성이 높아 의료 및 산업 소재로 사용되고 있다. 카세인은 양친매성 구조로 내부는 소수성이기 때문에 수용액에서 마이셀로 자가 조립이 가능하여 난용성 약물을 봉입할 수 있다. 또한, 단백질 고분자 소재로 생분해성을 갖고 있어 약물의 전달체로서 적합한 특징을 가진다. 본 연구에서는 칼슘 이온 외에 마그네슘, 아연, 철 등 생체 내 존재하는 다양한 금속 이온들을 사용하여 각각 효과적인 카세인 나노입자 형성 조건을 규명하였다. 동적 광산란 측정기와 제타 전위 측정을 통해 150 nm 이하의 균일한 사이즈를 유지하고 음전하를 띠는 나노입자가 형성됨을 확인하였다. 또한, 각각의 카세인 나노입자가 HeLa 세포주에서 80% 이상의 생존율을 나타내 낮은 세포 독성을 확인하였고, 카세인 나노입자 내부에 시험 약물로서 나일 레드를 봉입하여 세포 내부로 효과적으로 유입됨을 공초점 현미경으로 입증하였다. 본 실험들을 통해 제조된 카세인 나노입자의 약물 전달체로서의 가능성을 확인하였다.

Keywords

Acknowledgement

이 연구는 충남대학교 학술연구비에 의해 지원되었음.

References

  1. D. Verma, N. Gulati, S. Kaul, S. Mukherjee, and U. Nagaich, Protein based nanostructures for drug delivery, J. Pharm., 2018, 1-18 (2018).
  2. A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, and H. Car, Nanoparticles as drug delivery systems, Pharmacol. Rep., 64, 1020-1037 (2012). https://doi.org/10.1016/s1734-1140(12)70901-5
  3. A. O. Elzoghby, W. M. Samy, and N. A. Elgindy, Protein-based nanocarriers as promising drug and gene delivery systems, J. Control. Rel., 161, 38-49 (2012). https://doi.org/10.1016/j.jconrel.2012.04.036
  4. M. L. Picchio, J. C. Cuggino, G. Nagel, S. Wedepohl, R. J. Minari, C. I. A. Igarzabal, L. Gugliotta, and M. Calderon, Crosslinked casein-based micelles as a dually responsive drug delivery system, Polym. Chem., 9, 3499-3510 (2018). https://doi.org/10.1039/c8py00600h
  5. T. Huppertz, A. L. Kelly, and C. G. de Kruif, Disruption and reassociation of casein micelles under high pressure, J. Dairy Res., 73, 294-298 (2006). https://doi.org/10.1017/S0022029906001725
  6. T. K. Glab, and J. Boratynski, Potential of casein as a carrier for biologically active agents, Top. Curr. Chem., 375, 1-20 (2017). https://doi.org/10.1007/s41061-016-0088-1
  7. J. S. Garcia, C. S. de Magalhaes, and M. A. Z. Arruda, Trends in metal-binding and metalloprotein analysis, Talanta, 69, 1-15 (2006). https://doi.org/10.1016/j.talanta.2005.08.041
  8. J. R. Madan, I. N. Ansari, K. Dua, and R. Awasthi, Formulation and In Vitro Evaluation of Casein Nanoparticles as Carrier for Celecoxib, Adv. Pharm. Bull., 10, 408-417 (2020). https://doi.org/10.34172/apb.2020.049
  9. A. Shapira, I. Davidson, N. Avni, Y. G. Assaraf, and Y. D. Livney, β-Casein nanoparticle-based oral drug delivery system for potential treatment of gastric carcinoma: stability, target-activated release and cytotoxicity, Eur. J. Pharm. Biopharm., 80, 298-305 (2012). https://doi.org/10.1016/j.ejpb.2011.10.022
  10. N. Ghayour, S. M. H. Hosseini, M. H. Eskandari, S. Esteghlal, A. R. Nekoei, H. H. Gahruie, M. Tatar, and F. Naghibalhossaini, Nanoencapsulation of quercetin and curcumin in casein-based delivery systems, Food Hydrocoll., 87, 394-403 (2019). https://doi.org/10.1016/j.foodhyd.2018.08.031
  11. S. Gandhi and I. Roy, Doxorubicin-loaded casein nanoparticles for drug delivery: Preparation, characterization, and in vitro evaluation, Int. J. Biol. Macromol., 121, 6-12 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.005
  12. L. Xv, X. Qian, Y. Wang, C. Yu, D. Qin, Y. Zhang, P. Jin, and Q. Du, Structural modification of nanomicelles through phosphatidylcholine: The enhanced drug-loading capacity and anticancer activity of celecoxib-casein nanoparticles for the intravenous delivery of celecoxib, Nanomaterials, 10, 451 (2020).
  13. K. Pan, Y. Luo, Y. Gan, S. J. Baek, and Q. Zhong, pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity, Soft Mater., 10, 6820-6830 (2014). https://doi.org/10.1039/C4SM00239C
  14. S. W. El-Far, M. W. Helmy, S. N. Khattab, A. A. Bekhit, A. A. Hussein, and A. O. Elzoghby, Folate conjugated vs PEGylated phytosomal casein nanocarriers for codelivery of fungal- and herbalderived anticancer drugs, Nanomedicine, 13, 1463-1480 (2018). https://doi.org/10.2217/nnm-2018-0006
  15. H. Perlstein, Y. Bavli, T. Turovsky, A. Rubinstein, D. Danino, D. Stepensky, and Y. Barenholz, Beta-casein nanocarriers of celecoxib for improved oral bioavailability, Eur. J. Nanomed., 6, 217- 226 (2014).
  16. R. Penalva, I. Esparza, M. Agueros, C. J. G. Navarro, C. G. Ferrero, and J. M. Irache, Casein nanoparticles as carriers for the oral delivery of folic acid, Food Hydrocoll., 44, 399-406 (2015). https://doi.org/10.1016/j.foodhyd.2014.10.004
  17. M. F. Diouani, O. Ouerghi, K. Belgacem, M. Sayhi, R. Ionescu, and D. Laouini, Casein-conjugated gold nanoparticles for amperometric detection of Leishmania infantum, Biosensors, 9, 68 (2019).
  18. Y. Yao, H. Wang, R. Wang, and Y. Chai, Preparation and characterization of homogeneous and enhanced casein protein-based composite films via incorporating cellulose microgel, Sci. Rep., 9, 1221 (2019).
  19. M. J. Kronman and G. D. Fasman, Metal-ion binding and the molecular conformational properties of α lactalbumi, CRC Crit. Rev. Biochem. Mol. Biol., 24, 565 (1989).
  20. M. Yamada and M. Tsuruzumi, Utilization of milk protein as an environmental material: Accumulation of metal ions using a protein-inorganic hybrid material, Polym. J., 48, 295-300 (2016). https://doi.org/10.1038/pj.2015.113