DOI QR코드

DOI QR Code

폴리아크릴로나이트릴/리그닌 복합소재로부터 생성된 탄소 필름의 전기적 성질 및 흡착 성능

Preparation of Carbon Films from Polyacrylonitrile@Lignin Composites, and Their Electrical Properties and Adsorption Behavior

  • 배준원 (동덕여자대학교 응용화학과)
  • Joonwon Bae (Department of Applied Chemistry, Dongduk Women's University)
  • 투고 : 2023.01.14
  • 심사 : 2023.02.03
  • 발행 : 2023.04.10

초록

리그닌(lignin)은 고분자와 혼합될 수 있고 탄화도 가능하므로 효용성이 크다. 본 실험에서는, 탄화에 유리한 고분자인 폴리아크릴로나이트릴(polyacrylonitrile, PAN)과 리그닌을 혼합하여 탄소 전구체(precursor)로 제조하고, 탄화(carbonization)하여 안정한 탄소 필름이 제어된 탄화 과정을 통해 제조되었다. 얻어진 탄화 소재의 형태적, 전기적 특성들이 분석되었으며, 흡착 성능이 실험적으로 제시되었다. 탄소 전구체 복합소재의 형성은 적외선 분광기(Fourier-transform infrared, FT-IR)를 통해 확인하였고, 생성된 탄소 필름의 외형적 특성은 주사전자현미경(scanning electron microscope, SEM)을 이용하여 고찰하였다. 이를 통해 전구체 필름의 구조적 안정성이 탄화 이후에도 유지됨을 확인하였으며, 필름 내부에 존재하는 리그닌의 흔적도 고찰할 수 있었다. 탄소 필름의 미세 구조는 라만(Raman) 분광기를 통해 분석하였으며, 표면적 및 기공 구조는 BET (Brunauer-Emmett-Teller) 법으로 측정하여, 비교적 균일한 기공이 형성됨을 확인하였다. 탄소 시료의 전기적 특성도 고찰하여, 흡착 소재로서 사용 가능함을 확인하였고, 흡착(adsorption) 테스트를 통해 금속 양이온을 효율적으로 제거할 수 있음을 증명하였다. 본 연구는 해당 분야 향후 연구에 중요한 정보를 제공할 것이다.

Lignin is compatible with various polymeric materials and useful as a carbon precursor. In this work, carbon monolith films were produced from polyacrylonitrile (PAN)@lignin precursor films by a controlled carbonization cycle. In addition, their morphological features, electrical properties, and adsorption behavior were analyzed and compared with those of carbonized PAN films. The successful formation of PAN@lignin precursor was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. SEM was used to examine the morphology of precursor and carbonized films, revealing that both precursor and carbonized films retained structural stability following carbonization. A trace of lignin in the carbonized films was also found. The pore structure of the carbonized PAN@lignin film was measured using the BET method, indicating the formation of fairly uniform pores. The electrical properties were also analyzed to obtain the Ohmic relation, which demonstrated that the electrical signal was influenced by incoming materials. Finally, the carbonized PAN@lignin films were useful as adsorbents to remove metal ions. This study provides important information for future initiatives in relevant research fields.

키워드

과제정보

이 연구는 동덕여자대학교의 지원으로 수행되었습니다. (2022년)

참고문헌

  1. Z. Jiadeng, Y. Chaoyi, Z. Xin, Y. Chen, J. Mengjin, and Z. Xiangwu, A sustainable platform of lignin: From bioresources to materials and their applications in rechargeable batteries and supercapacitors, Prog. Energy Combust. Sci., 76, 100788 (2020).
  2. P. K. Dikshit, H. B. Jun, and B. S. Kim, Biological conversion of lignin and its derivatives to fuels and chemicals, Korean J. Chem. Eng., 37, 387-401 (2020). https://doi.org/10.1007/s11814-019-0458-9
  3. S. Wang, L. Lyu, G. Sima, Y. Cui, B. Li, X. Zhang, and L. Gan, Optimization of fructose dehydration to 5-hydroxymethylfurfural catalyzed by SO3H-bearing lignin-derived ordered mesoporous carbon, Korean J. Chem. Eng., 36, 1042-1050 (2019). https://doi.org/10.1007/s11814-019-0281-3
  4. E. Svinterikos, I. Zuburtikudis, and M. Al-Marzouqi, Electrospun lignin-derived carbon micro- and nanofibers : A review on precursors, properties, and applications, ACS Sustain. Chem. Eng., 8, 13868-13893 (2020). https://doi.org/10.1021/acssuschemeng.0c03246
  5. E. Frank, L. M. Steudle, D. Ingildeev, J. M. Sporl, and M. R. Buchmeiser, Carbon fibers: Precursor systems, processing, structure, and properties, Angew. Chem. Int. Ed., 53, 5262-5298 (2014). https://doi.org/10.1002/anie.201306129
  6. O. -N. Hur, S. Park, S. Park, B. H. Kang, C. -S. Lee, J. -Y. Hong, S. -H. Park, and J. Bae, A study on fabrication of polypyrrole@lignin composite and electrical sensing and metal ion adsorption capabilities, Mater. Chem. Phys., 285, 126166 (2022).
  7. L. Zhu and Z. Zhong, Effects of cellulose, hemicellulose and lignin on biomass pyrolysis kinetics, Korean J. Chem. Eng., 37, 1660-1668 (2020). https://doi.org/10.1007/s11814-020-0553-y
  8. A. A. Ahmad, M. Al-Raggad, and N. Shareef, Production of activated carbon derived from agricultural by-products via microwave-induced chemical activation: A review, Carbon Lett., 31, 957-971 (2021). https://doi.org/10.1007/s42823-020-00208-z
  9. A. El Nemr, R. M. Aboughaly, A. El Sikaily, M. S. Masoud, M. S. Ramadan, and S. Ragab, Microporous-activated carbons of type I adsorption isotherm derived from sugarcane bagasse impregnated with zinc chloride, Carbon Lett., 32, 229-249 (2022). https://doi.org/10.1007/s42823-021-00270-1
  10. J. -Y. Hong, W. -K. Oh, K. -Y. Shin, O. S. Kwon, S. Son, and J. Jang, Spatially controlled carbon sponge for targeting internalized radioactive materials in human body, Biomaterials, 33, 5056-5066 (2012). https://doi.org/10.1016/j.biomaterials.2012.03.064