Acknowledgement
This work is endorsed by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A03038697) and Korea government (MSIP) (No. NRF-2021M1A2A2038115).
References
- TRVST, https://www.trvst.world/renewable-energy/challenges-for-renewable-energy/, 12, Nov 2022.
- C. Fan, P. Zhang, R. Wang, Y. Xu, X. Sun, J. Zhang, J. Cheng, and C. Xu, Applications of two dimensional material-mxene for proton exchange membrane fuel cells (PEMFCs) and water electrolysis, Curr. Nanosci., 17, 2-13 (2021). https://doi.org/10.2174/1573413716999200614140513
- B. C. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, 414, 345-352 (2001). https://doi.org/10.1038/35104620
- M. Wang, M. Chen, Z. Yang, G. Liu, J. K. Lee, W. Yang, and X. Wang, High-performance and durable cathode catalyst layer with hydrophobic C@ PTFE particles for low-Pt loading membrane assembly electrode of PEMFC, Energy Convers. Manage., 191, 132-140 (2019). https://doi.org/10.1016/j.enconman.2019.04.014
- F. M. Guangul, and G. T. Chala, A comparative study between the seven types of fuel cells, Appl. Sci. Eng. Prog., 13, 185-194 (2020).
- G. He, Z. Li, J. Zhao, S. Wang, H. Wu, M. D. Guiver, and Z. Jiang, Nanostructured ion-exchange membranes for fuel cells: Recent advances and perspectives, Adv. Mater., 27, 5280-5295 (2015). https://doi.org/10.1002/adma.201501406
- M. Z. Jacobson, W. G. Colella, and D. M. Golden, Cleaning the air and improving health with hydrogen fuel-cell vehicles, Science, 308, 1901-1905 (2005). https://doi.org/10.1126/science.1109157
- S. M. Haile; D. A. Boysen, C. R. I. Chisholm, and R. B. Merle, Solid acids as fuel cell electrolytes, Nature, 410, 910-913 (2001). https://doi.org/10.1038/35073536
- M. R. Berber, M. S. Ismail, M. Pourkashanian, M. B. Zakaria Hegazy, and U. P. Apfel, Promising Membrane for polymer electrolyte fuel cells shows remarkable proton conduction over wide temperature and humidity ranges, ACS Appl. Polym. Mater., 3, 4275-4286 (2021). https://doi.org/10.1021/acsapm.1c00869
- G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, Polymeric materials as anion-exchange membranes for alkaline fuel cells, Prog. Polym. Sci., 36, 1521-1557 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.004
- Z. Sun and B. Lin, Applied Polymer MaterialsF. Yan, Anion-exchange membranes for alkaline fuel-cell applications: The effects of cations, ChemSusChem, 11, 58-70 (2018). https://doi.org/10.1002/cssc.201701600
- M. Adamski, N. Peressin, and S. Holdcroft, On the evolution of sulfonated polyphenylenes as proton exchange membranes for fuel cells, Mater. Adv., 2, 4966-5005 (2021). https://doi.org/10.1039/D1MA00511A
- M. Sugumar, V. Kugarajah, and S. Dharmalingam, Optimization of operational factors using statistical design and analysis of nanofiller incorporated polymer electrolyte membrane towards performance enhancement of microbial fuel cell, Process Saf. Environ., 158, 474-485 (2022). https://doi.org/10.1016/j.psep.2021.12.018
- J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, Graphene-mediated organic-inorganic composites with improved hydroxide conductivity and outstanding alkaline stability for anion exchange membranes, Compos. B Eng., 164, 324-332 (2019). https://doi.org/10.1016/j.compositesb.2018.11.084
- R. Narducci, E. Sgreccia, P. Knauth, and M. L. Di Vona, Anion exchange membranes with 1D, 2D and 3D fillers: A review. Polymers, 13, 3887 (2021).
- V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, Liquid exfoliation of layered materials, Science, 340, 1226419 (2013).
- G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol., 9, 768-779 (2014). https://doi.org/10.1038/nnano.2014.207
- Y. Chen, H. Yang, Z. Han, Z. Bo, J. Yan, K. Cen, and K. K. Ostrikov, MXene-based electrodes for supercapacitor energy storage, Energy Fuels, 36, 2390-2406 (2022). https://doi.org/10.1021/acs.energyfuels.1c04104
- F. Ming, H. Liang, G. Huang, Z. Bayhan, and H. N. Alshareef, MXenes for rechargeable batteries beyond the lithium-ion, Adv. Mater., 33, 2004039 (2021).
- L. Yin, Y. Li, X. Yao, Y. Wang, L. Jia, Q. Liu, J. Li, Y. Li, and D. He, MXenes for solar cells, Nanomicro Lett., 13, 1-17 (2021).
- Z. Yang, M. Zhang, Z. Zhao, W. Lan, X. Zhang, and M. Fan, Application of 2D nanomaterial MXene in anion exchange membranes for alkaline fuel cells: Improving ionic conductivity and power density, Int. J. Hydrog. Energy, 47, 18122-18138 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.269
- L. Chen, X. Dai, W. Feng, and Y. Chen, Biomedical applications of MXenes: From nanomedicine to biomaterials. AMR, 3, 785-798 (2022).
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 23, 4248-4253 (2011). https://doi.org/10.1002/adma.201102306
- Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang, L. Xia, S. Ma, Z. Yin, R. Wang, Y. Cao, and Z. Li, The recent progress of MXene-Based microwave absorption materials, Carbon, 174, 484- 499 (2021). https://doi.org/10.1016/j.carbon.2020.12.060
- S. Bae, Y. G. Kang, M. Khazaei, K. Ohno, Y. H. Kim, M. J. Han, K. J. Chang, and H. Raebiger, Electronic and magnetic properties of carbide MXenes - the role of electron correlations, Mater. Today Adv., 9, 100118 (2021).
- S. Kim, F. Gholamirad, M. Yu, C. M. Park, A. Jang, M. Jang, N. Taheri-Qazvini, and Y. Yoon, Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene, Chem. Eng. J., 406, 126789 (2021).
- M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, 25th Anniversary Article: MXenes: A new family of two-dimensional materials, Adv. Mater., 2, 992-1005 (2014).
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional transition metal carbides. ACS Nano, 6, 1322-1331 (2012). https://doi.org/10.1021/nn204153h
- A. D. Dillon, M. J. Ghidiu, A. L. Krick, J. Griggs, S. J. May, Y. Gogotsi, M. W. Barsoum, and A. T. Fafarman. Highly conductive optical quality solution-processed films of 2D titanium carbide, Adv. Funct. Mater., 26, 4162-4168 (2016). https://doi.org/10.1002/adfm.201600357
- J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P. A. Lynch, S. Qin, M. Han, W. Yang, and J. Liu, Scalable Manufacturing of Free Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity, Adv. Mater., 32, 2001093 (2020).
- Y. Fan, L. Li, Y. Zhang, X. Zhang, D. Geng, and W. Hu, Recent advances in growth of transition metal carbides and nitrides (MXenes) crystals, Adv. Funct. Mater., 32, 2111357 (2022).
- M. W. Barsoum, The MN+ 1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem., 28, 201-281 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6
- K. Hideo, K. Tsuzura, and H. Shimizu, Ion exchange membranes, in: K. Dorfner (Ed.), Ion Exchangers, Walter de Gruyter, Berlin (1991).
- H. Strathmann, Electrodialysis and related processes. In: R. D. Noble and S. A. Stern (ed.). Membrane Science and Technology, 2, 213-281, Elsevier, Amsterdam, Netherlands (1995).
- C. Felice and D. Qu, Optimization of the synthesis of Nafion-montmorillonite nanocomposite membranes for fuel cell applications through statistical design-of-experiment, Ind. Eng. Chem. Res., 50, 721-727 (2011). https://doi.org/10.1021/ie1017628
- B. Smitha, S. Sridhar, and A. A. Khan, Solid polymer electrolyte membranes for fuel cell applications-A review, J. Membr. Sci., 259, 10-26 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
- D.J. Kim, M. J. Jo, and S. Y. Nam, A review of polymer-nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem., 21, 36-52 (2015). https://doi.org/10.1016/j.jiec.2014.04.030
- B. P. Tripathi and V. K. Shahi, Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Prog. Polym. Sci., 36, 945-979 (2011). https://doi.org/10.1016/j.progpolymsci.2010.12.005
- H. Ahmad, S. K. Kamarudin, U. A. Hasran, and W. W. Daud, Overview of hybrid membranes for direct-methanol fuel-cell applications, Int. J. Hydrog. Energy, 35, 2160-2175 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.054
- R. Q. Fu, J. J. Woo, S. J. Seo, J. S. Lee, and S. H. Moon,. Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: Preparation and characterizations. J. Power Sources, 179, 458-466 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.118
- B. P. Tripathi and V. K. Shahi, Surface redox polymerized SPEEK-MO2-PANI (M= Si, Zr and Ti) composite polyelectrolyte membranes impervious to methanol, Colloids Surf. A Physicochem. Eng. Asp., 340, 10-19 (2009). https://doi.org/10.1016/j.colsurfa.2009.02.032
- P. Krishnan, J. S. Park, and C. S. Kim, Preparation of proton-conducting sulfonated poly (ether ether ketone)/boron phosphate composite membranes by an in situ sol-gel process, J. Membr. Sci., 279, 220-229 (2006). https://doi.org/10.1016/j.memsci.2005.12.010
- R. Kannan, P. P. Aher, T. Palaniselvam, S. Kurungot, U. K. Kharul, and V. K. Pillai, Artificially designed membranes using phosphonated multiwall carbon nanotube- polybenzimidazole composites for polymer electrolyte fuel cells, J. Phys. Chem. Lett., 1, 2109-2113 (2010). https://doi.org/10.1021/jz1007005
- M. Helen, B. Viswanathan, and S. S. Murthy, Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and polyvinyl alcohol, J. Power Sources, 163, 433-439 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.041
- A. F. Ismail, N. H. Othman, and A. Mustafa, Sulfonated polyether ether ketone composite membrane using tungstosilicic acid supported on silica-aluminium oxide for direct methanol fuel cell (DMFC), J. Membr. Sci., 329, 18-29 (2009). https://doi.org/10.1016/j.memsci.2008.11.052
- R. Gosalawit, S. Chirachanchai, S. Shishatskiy, and S. P. Nunes, Sulfonated montmorillonite/sulfonated poly (ether etherketone)(SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs), J. Membr. Sci., 323, 337-346 (2008). https://doi.org/10.1016/j.memsci.2008.06.038
- A. Boretti and S. Castelletto, MXenes in polymer electrolyte membrane hydrogen fuel and electrolyzer cells, Ceramics Int., 48, 34190-34198 (2022). https://doi.org/10.1016/j.ceramint.2022.08.345
- Z. Zeng, R. Song, S. Zhang, X. Han, Z. Zhu, X. Chen, and L. Wang, Biomimetic N-doped graphene membrane for proton exchange membranes, Nano Lett., 21, 4314-4319 (2021). https://doi.org/10.1021/acs.nanolett.1c00813
- D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman, and M. E. Tisack, Advanced materials for improved PEMFC performance and life, J. Power Sources, 131, 41-48 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
- C. Zhou, M. A. Guerra, Z. M. Qiu, T. A. Zawodzinski, and D. A. Schiraldi, Chemical durability studies of perfluorinated sulfonic acid polymers and model compounds under mimic fuel cell conditions, Macromolecules, 40, 8695-8707 (2007). https://doi.org/10.1021/ma071603z
- M. Danilczuk, F. D. Coms, and S. Schlick, Fragmentation of Fluorinated Model Compounds Exposed to Oxygen Radicals: Spin Trapping ESR Experiments and Implications for the Behaviour of Proton Exchange Membranes Used in Fuel Cells, Fuel Cells, 8, 436-452 (2008). https://doi.org/10.1002/fuce.200700057
- L. Gubler, H. Kuhn, T. J. Schmidt, G. G. Scherer, H. P. Brack, and K. Simbeck, Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes, Fuel Cells, 4, 196-207 (2004). https://doi.org/10.1002/fuce.200400019
- M. P. Rodgers, L. J. Bonville, H. R. Kunz, D. K. Slattery, and J. M. Fenton, Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime, Chem. Rev., 112, 6075-6103 (2012). https://doi.org/10.1021/cr200424d
- A. Panchenko,H. Dilger, J. Kerres, M. Hein, A. Ullrich, T. Kaz, and E. Roduner, In-situ spin trap electron paramagnetic resonance study of fuel cell processes, Phys. Chem. Chem. Phys., 6, 2891-2894 (2004). https://doi.org/10.1039/b404253k
- S. Zhao, R. Wang, T. Tian, H. Liu, H. Zhang, and H. Tang, Self-assembly-cooperating in situ construction of MXene-CeO2 as hybrid membrane coating for durable and high-performance proton exchange membrane fuel cell, ACS Sustain. Chem. Eng., 10, 4269-4278 (2022). https://doi.org/10.1021/acssuschemeng.2c00087
- A. Al-Othman, M. F. Hassan, M. Tawalbeh, and A. Ka'ki, Proton conductivity studies in zirconium phosphate/MXenes in PEM fuel cells, Advances in Science and Engineering Technology International Conferences (ASET), IEEE, February 2022, 1-5.
- J. Zhang, Y. Liu, Z. Lv, T. Zhao, P. Li, Y. Sun, and J. Wang, Sulfonated Ti3C2Tx to construct proton transfer pathways in polymer electrolyte membrane for enhanced conduction, Solid State Ion., 310, 100-111 (2017). https://doi.org/10.1016/j.ssi.2017.08.013
- Y. Liu, J. Zhang, X. Zhang, Y. Li, and J. Wang, Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane, ACS Appl. Mater. Interfaces, 8, 20352-20363 (2016). https://doi.org/10.1021/acsami.6b04800
- J. R. Varcoe and R. C. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells, Fuel Cells, 5, 187-200 (2005). https://doi.org/10.1002/fuce.200400045
- M. Hren, M. Bozic, D. Fakin, K. S. Kleinschek and S. Gorgieva, Alkaline membrane fuel cells: Anion exchange membranes and fuels, Sustain. Energy Fuels, 5, 604-637 (2021). https://doi.org/10.1039/D0SE01373K
- W. E. Mustain, M. Chatenet, M. Page, and Y. S. Kim, Durability challenges of anion exchange membrane fuel cells, Energy Environ. Sci., 13, 2805-2838 (2020). https://doi.org/10.1039/D0EE01133A
- R. Narducci, E. Sgreccia, P. Knauth, and M. L. Di Vona, Anion exchange membranes with 1D, 2D and 3D Fillers: A review, Polymers, 13, 3887 (2021).
- Z. Yang, M. Zhang, Z. Zhao, W. Lan, X. Zhang, and M. Fan, Application of 2D nanomaterial MXene in anion exchange membranes for alkaline fuel cells: Improving ionic conductivity and power density, Int. J. Hydrog. Energy, 47, 18122-18138 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.269
- X. Zhang, C. Fan, N. Yao, P. Zhang, T. Hong, C. Xu, and J. Cheng, Quaternary Ti3C2Tx enhanced ionic conduction in quaternizedpolysulfone membrane for alkaline anion exchange membrane fuel cells, J. Membr. Sci., 563, 882-887 (2018). https://doi.org/10.1016/j.memsci.2018.06.059
- L. Wang and B. Shi, Hydroxide conduction enhancement of chitosan membranes by functionalized MXene, Materials, 11, 2335 (2018).