DOI QR코드

DOI QR Code

Emergence of MXenes for Fuel Cell

연료전지용 MXenes의 등장

  • Manoj Karakoti (Research Institute for Green Energy Convergence Technology, Gyeongsang National University) ;
  • Sang Yong Nam (Research Institute for Green Energy Convergence Technology, Gyeongsang National University)
  • Received : 2023.02.23
  • Accepted : 2023.03.15
  • Published : 2023.04.10

Abstract

Recently, 2D materials greatly impact in the various applications especially in the energy conversion and storage devices. Among the 2D materials, nowadays researchers are showing their propensity towards the MXenes due to their potential structural and physical properties as well as their use in various applications. Recently, MXenes have been used as filler in polymer electrolytes membranes and as catalytic support to increase the performance of fuel cells (FCs). But this review covers only recent progress and application of MXenes in proton and anion exchange membranes for FCs. Also, this review will provide a significant guidance and broad overview for future research in MXenes based polymer electrolyte membrane for FCs.

Keywords

Acknowledgement

This work is endorsed by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A03038697) and Korea government (MSIP) (No. NRF-2021M1A2A2038115).

References

  1. TRVST, https://www.trvst.world/renewable-energy/challenges-for-renewable-energy/, 12, Nov 2022.
  2. C. Fan, P. Zhang, R. Wang, Y. Xu, X. Sun, J. Zhang, J. Cheng, and C. Xu, Applications of two dimensional material-mxene for proton exchange membrane fuel cells (PEMFCs) and water electrolysis, Curr. Nanosci., 17, 2-13 (2021). https://doi.org/10.2174/1573413716999200614140513
  3. B. C. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, 414, 345-352 (2001). https://doi.org/10.1038/35104620
  4. M. Wang, M. Chen, Z. Yang, G. Liu, J. K. Lee, W. Yang, and X. Wang, High-performance and durable cathode catalyst layer with hydrophobic C@ PTFE particles for low-Pt loading membrane assembly electrode of PEMFC, Energy Convers. Manage., 191, 132-140 (2019). https://doi.org/10.1016/j.enconman.2019.04.014
  5. F. M. Guangul, and G. T. Chala, A comparative study between the seven types of fuel cells, Appl. Sci. Eng. Prog., 13, 185-194 (2020).
  6. G. He, Z. Li, J. Zhao, S. Wang, H. Wu, M. D. Guiver, and Z. Jiang, Nanostructured ion-exchange membranes for fuel cells: Recent advances and perspectives, Adv. Mater., 27, 5280-5295 (2015). https://doi.org/10.1002/adma.201501406
  7. M. Z. Jacobson, W. G. Colella, and D. M. Golden, Cleaning the air and improving health with hydrogen fuel-cell vehicles, Science, 308, 1901-1905 (2005). https://doi.org/10.1126/science.1109157
  8. S. M. Haile; D. A. Boysen, C. R. I. Chisholm, and R. B. Merle, Solid acids as fuel cell electrolytes, Nature, 410, 910-913 (2001). https://doi.org/10.1038/35073536
  9. M. R. Berber, M. S. Ismail, M. Pourkashanian, M. B. Zakaria Hegazy, and U. P. Apfel, Promising Membrane for polymer electrolyte fuel cells shows remarkable proton conduction over wide temperature and humidity ranges, ACS Appl. Polym. Mater., 3, 4275-4286 (2021). https://doi.org/10.1021/acsapm.1c00869
  10. G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, Polymeric materials as anion-exchange membranes for alkaline fuel cells, Prog. Polym. Sci., 36, 1521-1557 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.004
  11. Z. Sun and B. Lin, Applied Polymer MaterialsF. Yan, Anion-exchange membranes for alkaline fuel-cell applications: The effects of cations, ChemSusChem, 11, 58-70 (2018). https://doi.org/10.1002/cssc.201701600
  12. M. Adamski, N. Peressin, and S. Holdcroft, On the evolution of sulfonated polyphenylenes as proton exchange membranes for fuel cells, Mater. Adv., 2, 4966-5005 (2021). https://doi.org/10.1039/D1MA00511A
  13. M. Sugumar, V. Kugarajah, and S. Dharmalingam, Optimization of operational factors using statistical design and analysis of nanofiller incorporated polymer electrolyte membrane towards performance enhancement of microbial fuel cell, Process Saf. Environ., 158, 474-485 (2022). https://doi.org/10.1016/j.psep.2021.12.018
  14. J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, Graphene-mediated organic-inorganic composites with improved hydroxide conductivity and outstanding alkaline stability for anion exchange membranes, Compos. B Eng., 164, 324-332 (2019). https://doi.org/10.1016/j.compositesb.2018.11.084
  15. R. Narducci, E. Sgreccia, P. Knauth, and M. L. Di Vona, Anion exchange membranes with 1D, 2D and 3D fillers: A review. Polymers, 13, 3887 (2021).
  16. V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, Liquid exfoliation of layered materials, Science, 340, 1226419 (2013).
  17. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol., 9, 768-779 (2014). https://doi.org/10.1038/nnano.2014.207
  18. Y. Chen, H. Yang, Z. Han, Z. Bo, J. Yan, K. Cen, and K. K. Ostrikov, MXene-based electrodes for supercapacitor energy storage, Energy Fuels, 36, 2390-2406 (2022). https://doi.org/10.1021/acs.energyfuels.1c04104
  19. F. Ming, H. Liang, G. Huang, Z. Bayhan, and H. N. Alshareef, MXenes for rechargeable batteries beyond the lithium-ion, Adv. Mater., 33, 2004039 (2021).
  20. L. Yin, Y. Li, X. Yao, Y. Wang, L. Jia, Q. Liu, J. Li, Y. Li, and D. He, MXenes for solar cells, Nanomicro Lett., 13, 1-17 (2021).
  21. Z. Yang, M. Zhang, Z. Zhao, W. Lan, X. Zhang, and M. Fan, Application of 2D nanomaterial MXene in anion exchange membranes for alkaline fuel cells: Improving ionic conductivity and power density, Int. J. Hydrog. Energy, 47, 18122-18138 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.269
  22. L. Chen, X. Dai, W. Feng, and Y. Chen, Biomedical applications of MXenes: From nanomedicine to biomaterials. AMR, 3, 785-798 (2022).
  23. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 23, 4248-4253 (2011). https://doi.org/10.1002/adma.201102306
  24. Z. Zhang, Z. Cai, Y. Zhang, Y. Peng, Z. Wang, L. Xia, S. Ma, Z. Yin, R. Wang, Y. Cao, and Z. Li, The recent progress of MXene-Based microwave absorption materials, Carbon, 174, 484- 499 (2021). https://doi.org/10.1016/j.carbon.2020.12.060
  25. S. Bae, Y. G. Kang, M. Khazaei, K. Ohno, Y. H. Kim, M. J. Han, K. J. Chang, and H. Raebiger, Electronic and magnetic properties of carbide MXenes - the role of electron correlations, Mater. Today Adv., 9, 100118 (2021).
  26. S. Kim, F. Gholamirad, M. Yu, C. M. Park, A. Jang, M. Jang, N. Taheri-Qazvini, and Y. Yoon, Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene, Chem. Eng. J., 406, 126789 (2021).
  27. M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, 25th Anniversary Article: MXenes: A new family of two-dimensional materials, Adv. Mater., 2, 992-1005 (2014).
  28. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional transition metal carbides. ACS Nano, 6, 1322-1331 (2012). https://doi.org/10.1021/nn204153h
  29. A. D. Dillon, M. J. Ghidiu, A. L. Krick, J. Griggs, S. J. May, Y. Gogotsi, M. W. Barsoum, and A. T. Fafarman. Highly conductive optical quality solution-processed films of 2D titanium carbide, Adv. Funct. Mater., 26, 4162-4168 (2016). https://doi.org/10.1002/adfm.201600357
  30. J. Zhang, N. Kong, S. Uzun, A. Levitt, S. Seyedin, P. A. Lynch, S. Qin, M. Han, W. Yang, and J. Liu, Scalable Manufacturing of Free Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity, Adv. Mater., 32, 2001093 (2020).
  31. Y. Fan, L. Li, Y. Zhang, X. Zhang, D. Geng, and W. Hu, Recent advances in growth of transition metal carbides and nitrides (MXenes) crystals, Adv. Funct. Mater., 32, 2111357 (2022).
  32. M. W. Barsoum, The MN+ 1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem., 28, 201-281 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6
  33. K. Hideo, K. Tsuzura, and H. Shimizu, Ion exchange membranes, in: K. Dorfner (Ed.), Ion Exchangers, Walter de Gruyter, Berlin (1991).
  34. H. Strathmann, Electrodialysis and related processes. In: R. D. Noble and S. A. Stern (ed.). Membrane Science and Technology, 2, 213-281, Elsevier, Amsterdam, Netherlands (1995).
  35. C. Felice and D. Qu, Optimization of the synthesis of Nafion-montmorillonite nanocomposite membranes for fuel cell applications through statistical design-of-experiment, Ind. Eng. Chem. Res., 50, 721-727 (2011). https://doi.org/10.1021/ie1017628
  36. B. Smitha, S. Sridhar, and A. A. Khan, Solid polymer electrolyte membranes for fuel cell applications-A review, J. Membr. Sci., 259, 10-26 (2005). https://doi.org/10.1016/j.memsci.2005.01.035
  37. D.J. Kim, M. J. Jo, and S. Y. Nam, A review of polymer-nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem., 21, 36-52 (2015). https://doi.org/10.1016/j.jiec.2014.04.030
  38. B. P. Tripathi and V. K. Shahi, Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Prog. Polym. Sci., 36, 945-979 (2011). https://doi.org/10.1016/j.progpolymsci.2010.12.005
  39. H. Ahmad, S. K. Kamarudin, U. A. Hasran, and W. W. Daud, Overview of hybrid membranes for direct-methanol fuel-cell applications, Int. J. Hydrog. Energy, 35, 2160-2175 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.054
  40. R. Q. Fu, J. J. Woo, S. J. Seo, J. S. Lee, and S. H. Moon,. Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: Preparation and characterizations. J. Power Sources, 179, 458-466 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.118
  41. B. P. Tripathi and V. K. Shahi, Surface redox polymerized SPEEK-MO2-PANI (M= Si, Zr and Ti) composite polyelectrolyte membranes impervious to methanol, Colloids Surf. A Physicochem. Eng. Asp., 340, 10-19 (2009). https://doi.org/10.1016/j.colsurfa.2009.02.032
  42. P. Krishnan, J. S. Park, and C. S. Kim, Preparation of proton-conducting sulfonated poly (ether ether ketone)/boron phosphate composite membranes by an in situ sol-gel process, J. Membr. Sci., 279, 220-229 (2006). https://doi.org/10.1016/j.memsci.2005.12.010
  43. R. Kannan, P. P. Aher, T. Palaniselvam, S. Kurungot, U. K. Kharul, and V. K. Pillai, Artificially designed membranes using phosphonated multiwall carbon nanotube- polybenzimidazole composites for polymer electrolyte fuel cells, J. Phys. Chem. Lett., 1, 2109-2113 (2010). https://doi.org/10.1021/jz1007005
  44. M. Helen, B. Viswanathan, and S. S. Murthy, Fabrication and properties of hybrid membranes based on salts of heteropolyacid, zirconium phosphate and polyvinyl alcohol, J. Power Sources, 163, 433-439 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.041
  45. A. F. Ismail, N. H. Othman, and A. Mustafa, Sulfonated polyether ether ketone composite membrane using tungstosilicic acid supported on silica-aluminium oxide for direct methanol fuel cell (DMFC), J. Membr. Sci., 329, 18-29 (2009). https://doi.org/10.1016/j.memsci.2008.11.052
  46. R. Gosalawit, S. Chirachanchai, S. Shishatskiy, and S. P. Nunes, Sulfonated montmorillonite/sulfonated poly (ether etherketone)(SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs), J. Membr. Sci., 323, 337-346 (2008). https://doi.org/10.1016/j.memsci.2008.06.038
  47. A. Boretti and S. Castelletto, MXenes in polymer electrolyte membrane hydrogen fuel and electrolyzer cells, Ceramics Int., 48, 34190-34198 (2022). https://doi.org/10.1016/j.ceramint.2022.08.345
  48. Z. Zeng, R. Song, S. Zhang, X. Han, Z. Zhu, X. Chen, and L. Wang, Biomimetic N-doped graphene membrane for proton exchange membranes, Nano Lett., 21, 4314-4319 (2021). https://doi.org/10.1021/acs.nanolett.1c00813
  49. D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman, and M. E. Tisack, Advanced materials for improved PEMFC performance and life, J. Power Sources, 131, 41-48 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  50. C. Zhou, M. A. Guerra, Z. M. Qiu, T. A. Zawodzinski, and D. A. Schiraldi, Chemical durability studies of perfluorinated sulfonic acid polymers and model compounds under mimic fuel cell conditions, Macromolecules, 40, 8695-8707 (2007). https://doi.org/10.1021/ma071603z
  51. M. Danilczuk, F. D. Coms, and S. Schlick, Fragmentation of Fluorinated Model Compounds Exposed to Oxygen Radicals: Spin Trapping ESR Experiments and Implications for the Behaviour of Proton Exchange Membranes Used in Fuel Cells, Fuel Cells, 8, 436-452 (2008). https://doi.org/10.1002/fuce.200700057
  52. L. Gubler, H. Kuhn, T. J. Schmidt, G. G. Scherer, H. P. Brack, and K. Simbeck, Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes, Fuel Cells, 4, 196-207 (2004). https://doi.org/10.1002/fuce.200400019
  53. M. P. Rodgers, L. J. Bonville, H. R. Kunz, D. K. Slattery, and J. M. Fenton, Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime, Chem. Rev., 112, 6075-6103 (2012). https://doi.org/10.1021/cr200424d
  54. A. Panchenko,H. Dilger, J. Kerres, M. Hein, A. Ullrich, T. Kaz, and E. Roduner, In-situ spin trap electron paramagnetic resonance study of fuel cell processes, Phys. Chem. Chem. Phys., 6, 2891-2894 (2004). https://doi.org/10.1039/b404253k
  55. S. Zhao, R. Wang, T. Tian, H. Liu, H. Zhang, and H. Tang, Self-assembly-cooperating in situ construction of MXene-CeO2 as hybrid membrane coating for durable and high-performance proton exchange membrane fuel cell, ACS Sustain. Chem. Eng., 10, 4269-4278 (2022). https://doi.org/10.1021/acssuschemeng.2c00087
  56. A. Al-Othman, M. F. Hassan, M. Tawalbeh, and A. Ka'ki, Proton conductivity studies in zirconium phosphate/MXenes in PEM fuel cells, Advances in Science and Engineering Technology International Conferences (ASET), IEEE, February 2022, 1-5.
  57. J. Zhang, Y. Liu, Z. Lv, T. Zhao, P. Li, Y. Sun, and J. Wang, Sulfonated Ti3C2Tx to construct proton transfer pathways in polymer electrolyte membrane for enhanced conduction, Solid State Ion., 310, 100-111 (2017). https://doi.org/10.1016/j.ssi.2017.08.013
  58. Y. Liu, J. Zhang, X. Zhang, Y. Li, and J. Wang, Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane, ACS Appl. Mater. Interfaces, 8, 20352-20363 (2016). https://doi.org/10.1021/acsami.6b04800
  59. J. R. Varcoe and R. C. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells, Fuel Cells, 5, 187-200 (2005). https://doi.org/10.1002/fuce.200400045
  60. M. Hren, M. Bozic, D. Fakin, K. S. Kleinschek and S. Gorgieva, Alkaline membrane fuel cells: Anion exchange membranes and fuels, Sustain. Energy Fuels, 5, 604-637 (2021). https://doi.org/10.1039/D0SE01373K
  61. W. E. Mustain, M. Chatenet, M. Page, and Y. S. Kim, Durability challenges of anion exchange membrane fuel cells, Energy Environ. Sci., 13, 2805-2838 (2020). https://doi.org/10.1039/D0EE01133A
  62. R. Narducci, E. Sgreccia, P. Knauth, and M. L. Di Vona, Anion exchange membranes with 1D, 2D and 3D Fillers: A review, Polymers, 13, 3887 (2021).
  63. Z. Yang, M. Zhang, Z. Zhao, W. Lan, X. Zhang, and M. Fan, Application of 2D nanomaterial MXene in anion exchange membranes for alkaline fuel cells: Improving ionic conductivity and power density, Int. J. Hydrog. Energy, 47, 18122-18138 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.269
  64. X. Zhang, C. Fan, N. Yao, P. Zhang, T. Hong, C. Xu, and J. Cheng, Quaternary Ti3C2Tx enhanced ionic conduction in quaternizedpolysulfone membrane for alkaline anion exchange membrane fuel cells, J. Membr. Sci., 563, 882-887 (2018). https://doi.org/10.1016/j.memsci.2018.06.059
  65. L. Wang and B. Shi, Hydroxide conduction enhancement of chitosan membranes by functionalized MXene, Materials, 11, 2335 (2018).