차세대 염기서열분석을 이용한 유전성 대사질환의 유전진단

Genetic Diagnosis of Inherited Metabolic Disorders using Next-Generation Sequencing

  • 발행 : 2023.12.31

초록

유전성 대사질환은 생화학적 대사 이상에 의해 발생하는 질환 군으로, 매우 다양할 뿐만 아니라 임상 양상이 서로 겹칠 수 있어 진단에 어려움을 겪을 수 있다. 과거에는 유전성 대사질환의 원인이 될 수 있는 유전자를 선정한 후 한 개씩 분석하는 방식으로 유전자 검사를 시행했다. 하지만, 최근에는 차세대 염기서열분석 기술이 발전함에 따라 유전성 대사질환과 관련된 수백-수천개의 유전자를 한꺼번에 분석하거나, 인간의 모든 유전자를 포함하는 엑솜/게놈 분석을 시행한 후 원인 유전자를 찾는 방식으로 유전 진단의 패러다임이 바뀌고 있다. 본 종설에서는 차세대 염기서열분석을 이용한 유전성 대사질환의 유전 진단 방법과 진단율 및 주의점 등을 살펴보고자 한다.

Inherited metabolic disorders (IMD) are a group of disorders involving various metabolic pathways. Genetic diagnosis of IMD has been challenging because of extremely heterogeneous nature and extensive laboratory and/or phenotype overlap. Conventional genetic diagnosis was a gene-by-gene approach that needs a priori information on the causative genes that might underlie the IMD. Recent implementation of next-generation sequencing (NGS) technologies has changed the process of genetic diagnosis from a gene-by-gene approach to simultaneous analysis of targeted genes possibly associated with the IMD using gene panels or using whole exome/genome sequencing (WES/WGS) covering entire human genes. Clinical NGS tests can be a cost-effective approach for the rapid diagnosis of IMD with genetic heterogeneity and are becoming standard diagnostic procedures.

키워드

참고문헌

  1. Ferreira CR, Rahman S, Keller M, Zschocke J; ICIMD Advisory Group. An international classification of inherited metabolic disorders (ICIMD). J Inherit Metab Dis 2021;44:164-77.  https://doi.org/10.1002/jimd.12348
  2. Saudubray JM, Garcia-Cazorla A. Inborn Errors of Metabolism Overview: Pathophysiology, Manifestations, Evaluation, and Management. Pediatr Clin North Am 2018;65:179-208.  https://doi.org/10.1016/j.pcl.2017.11.002
  3. Han SH, Ki CS, Lee JE, Hong YJ, Son BK, Lee KH, et al. A novel mutation (A148V) in the glucose 6-phosphate translocase (SLC37A4) gene in a Korean patient with glycogen storage disease type 1b. J Korean Med Sci 2005;20:499-501.  https://doi.org/10.3346/jkms.2005.20.3.499
  4. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 2009;106:19096-101.  https://doi.org/10.1073/pnas.0910672106
  5. Adams DR, Eng CM. Next-Generation Sequencing to Diagnose Suspected Genetic Disorders. N Engl J Med 2018;379:1353-62.  https://doi.org/10.1056/NEJMra1711801
  6. Barbosa-Gouveia S, Vazquez-Mosquera ME, Gonzalez-Vioque E, Alvarez JV, Chans R, Laranjeira F, et al. Utility of Gene Panels for the Diagnosis of Inborn Errors of Metabolism in a Metabolic Reference Center. Genes (Basel) 2021;12:1262. 
  7. Martin AR, Williams E, Foulger RE, Leigh S, Daugherty LC, Niblock O, et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat Genet 2019;51:1560-5.  https://doi.org/10.1038/s41588-019-0528-2
  8. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2011;12:745-55.  https://doi.org/10.1038/nrg3031
  9. Ewans LJ, Schofield D, Shrestha R, Zhu Y, Gayevskiy V, Ying K, et al. Whole-exome sequencing reanalysis at 12 months boosts diagnosis and is cost-effective when applied early in Mendelian disorders. Genet Med 2018;20:1564-74.  https://doi.org/10.1038/gim.2018.39
  10. Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing: is WGS the better WES? Hum Genet 2016;135:359-62.  https://doi.org/10.1007/s00439-015-1631-9
  11. Brewer MH, Chaudhry R, Qi J, Kidambi A, Drew AP, Menezes MP, et al. Whole Genome Sequencing Identifies a 78 kb Insertion from Chromosome 8 as the Cause of Charcot-Marie-Tooth Neuropathy CMTX3. PLoS Genet 2016;12:e1006177. 
  12. Scocchia A, Wigby KM, Masser-Frye D, Del Campo M, Galarreta CI, Thorpe E, et al. Clinical whole genome sequencing as a first-tier test at a resource-limited dysmorphology clinic in Mexico. NPJ Genom Med 2019;4:5. 
  13. Vaz-Drago R, Custodio N, Carmo-Fonseca M. Deep intronic mutations and human disease. Hum Genet 2017;136:1093-1111.  https://doi.org/10.1007/s00439-017-1809-4
  14. Yubero D, Brandi N, Ormazabal A, Garcia-Cazorla A, Perez-Duenas B, Campistol J, et al. Targeted Next Generation Sequencing in Patients with Inborn Errors of Metabolism. PLoS One 2016;11:e0156359. 
  15. Shakiba M, Keramatipour M. Effect of Whole Exome Sequencing in Diagnosis of Inborn Errors of Metabolism and Neurogenetic Disorders. Iran J Child Neurol 2018;12:7-15. 
  16. Adhikari AN, Gallagher RC, Wang Y, Currier RJ, Amatuni G, Bassaganyas L, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med 2020;26:1392-7.  https://doi.org/10.1038/s41591-020-0966-5
  17. Carvalho B, Marques CJ, Santos-Silva R, Fontoura M, Carvalho D, Carvalho F. Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency: An Update on Genetic Analysis of CYP21A2 Gene. Exp Clin Endocrinol Diabetes 2021;129:477-81.  https://doi.org/10.1055/a-1108-1419
  18. Ravichandran L, Korula S, Asha HS, Varghese D, Parthiban R, Johnson J, et al. Allele-specific PCR and Next-generation sequencing based genetic screening for Congenital Adrenal Hyperplasia in India. Eur J Med Genet 2021;64:104369. 
  19. Li H, Zhu X, Yang Y, Wang W, Mao A, Li J, Bao S, Li J. Long-read sequencing: An effective method for genetic analysis of CYP21A2 variation in congenital adrenal hyperplasia. Clin Chim Acta 2023;547:117419. 
  20. La Cognata V, Cavallaro S. Detection of Structural Variants by NGS: Revealing Missing Alleles in Lysosomal Storage Diseases. Biomedicines 2022;10:1836. 
  21. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24.  https://doi.org/10.1038/gim.2015.30
  22. Kim YE, Ki CS, Jang MA. Challenges and Considerations in Sequence Variant Interpretation for Mendelian Disorders. Ann Lab Med 2019;39:421-9.  https://doi.org/10.3343/alm.2019.39.5.421
  23. Abou Tayoun AN, Pesaran T, DiStefano MT, Oza A, Rehm HL, Biesecker LG, et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat 2018;39:1517-24.  https://doi.org/10.1002/humu.23626
  24. Biesecker LG, Harrison SM; ClinGen Sequence Variant Interpretation Working Group. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet Med 2018;20:1687-8.  https://doi.org/10.1038/gim.2018.42
  25. Brnich SE, Abou Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS, Heinen CD, et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med 2019;12:3. 
  26. Zastrow DB, Baudet H, Shen W, Thomas A, Si Y, Weaver MA, et al. Unique aspects of sequence variant interpretation for inborn errors of metabolism (IEM): The ClinGen IEM Working Group and the Phenylalanine Hydroxylase Gene. Hum Mutat 2018;39:1569-80. https://doi.org/10.1002/humu.23649