DOI QR코드

DOI QR Code

CNN 및 SVM 기반의 개인 맞춤형 피복추천 시스템: 군(軍) 장병 중심으로

CNN and SVM-Based Personalized Clothing Recommendation System: Focused on Military Personnel

  • 박건우 (국방대학교 국방과학학과)
  • Park, GunWoo (Dept. of Defense Science, Korea National Defense Univ)
  • 투고 : 2022.12.27
  • 심사 : 2023.01.09
  • 발행 : 2023.01.31

초록

현재 軍(육군) 입대 장병은 신병훈련소에서 신체에 대한 치수 측정(자동, 수동) 및 샘플 피복을 착용해 본 후, 희망하는 치수로 피복을 지급받고 있다. 하지만, 민간 평상복보다 상대적으로 매우 세분화된 치수 체계를 적용하고 있는 軍에서는 이와 같은 치수 측정 과정에서 발생하는 측정된 치수의 낮은 정확도로 인해 지급받은 피복이 제대로 맞지 않아 피복을 교체하는 빈도가 매우 빈번히 발생하고 있다. 뿐만 아니라 서구적으로 변화된 MZ 세대의 체형변화를 반영하지 않고, 10여 년 전(前)에 수집된 구세대 체형 데이터 기반의 치수 체계를 적용함으로써 재고량이 비효율적으로 관리되는 문제점이 있다. 즉, 필요한 규격의 피복은 부족하고 불필요한 규격의 피복재고는 다수 발생하고 있다. 따라서, 피복 교체빈도를 감소시키고 재고관리의 효율성을 향상하기 위해 딥러닝 기반의 신체 치수 자동측정과 빅데이터 분석 및 머신러닝 기반의 "입대 장병 개인 맞춤형 피복 자동 추천 시스템"을 제안한다.

Currently, soldiers enlisted in the military (Army) are receiving measurements (automatic, manual) of body parts and trying on sample clothing at boot training centers, and then receiving clothing in the desired size. Due to the low accuracy of the measured size during the measurement process, in the military, which uses a relatively more detailed sizing system than civilian casual clothes, the supplied clothes do not fit properly, so the frequency of changing the clothes is very frequent. In addition, there is a problem in that inventory is managed inefficiently by applying the measurement system based on the old generation body shape data collected more than a decade ago without reflecting the western-changed body type change of the MZ generation. That is, military uniforms of the necessary size are insufficient, and many unnecessary-sized military uniforms are in stock. Therefore, in order to reduce the frequency of clothing replacement and improve the efficiency of stock management, deep learning-based automatic measurement of body size, big data analysis, and machine learning-based "Personalized Combat Uniform Automatic Recommendation System for Enlisted Soldiers" is proposed.

키워드

참고문헌

  1. Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, "OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields," In IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 43, No. 1, pp.172-186, Jan, 2021. https://doi.org/10.1109/TPAMI.2019.2929257
  2. W. Chen, Z. Jiang, H. Guo, and X. Ni, "Fall Detection Based on Key Points of HumanSkeleton Using OpenPose," Symmetry. MDPI AG, May 5, 2020.
  3. K. Yoon-Kyu, K. Hee-Yong, and W. Dal-Soo, "Fall Detection Based on Human Skeleton Keypoints Using GRU," International Journal of Internet, Broadcasting and Communication Vol. 12, No. 4, pp.83-92, November 2020. https://doi.org/10.7236/IJIBC.2020.12.4.83
  4. K. Woojoo, S. Jaeho, S. Daniel, H. Chunxi, and X. Shuping, "Ergonomic postural assessment using a new open-source human pose estimation technology(OpenPose)," International Journal of Industrial Ergonomics, Vol. 84(2):103164, July 2021.
  5. K. Simonyan, and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," 3rd International Conference on Learning Representations (ICLR), Computational and Biological Learning Society, pp.1-14, April 2015.
  6. D. Nilanjan, Z. Yu-Dong, V. Rajinikanth, R. Pugalenthi, and N. Sri Madhava Raja, "Customized VGG19 Architecture for Pneumonia Detection in Chest X-Rays," Pattern Recognition Letters, Vol. 143, pp.67-74, March 2021. https://doi.org/10.1016/j.patrec.2020.12.010
  7. L. SungOn, and Y. Gyuwon, "The effect of satisfaction with the educational environment on the achievement level in outreach program for coffee barista and baking," The Journal of the Convergence on Culture Technology (JCCT), Vol. 8, No. 6, pp.185-190, November 2022.
  8. J. Jong Seok, J. Ha Eun, and O. Joo Hee, "Machine Learning Approach for Prediction of VOD Usage," The Journal of the Convergence on Culture Technology (JCCT), Vol. 8, No. 5, pp.507-513, September 2022.
  9. X. Zhou, Q. Huang, X. Sun, X. Xue, and Y. Wei, "Towards 3D human pose estimation in the wild: a weakly-supervised approach," The IEEE International Conference on Computer Vision (ICCV), pp.398-407, 2017.
  10. Y. Wei, O. Wanli, W. Xiaolong, R. Jimmy, L. Hongsheng, and W. Xiaogang, "3D human pose estimation in the wild by adversarial learning," The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.5255-5264, 2018.
  11. R. A. Clark, B. F. Mentiplay, E. Hough, and Y. H. Pua, "Three-dimensional cameras and skeleton pose tracking for physical function assessment: a review of uses, validity, current developments and Kinect alternatives," Gait & Posture Vol. 68, pp.193-200, Feburuery 2019 https://doi.org/10.1016/j.gaitpost.2018.11.029