DOI QR코드

DOI QR Code

Case study on soil conditioning for EPB tunneling and troubleshooting in various grounds

다양한 지반에서의 EPB TBM 첨가제 사용 및 문제 해결 사례 연구

  • 강한별 (현대건설 기술연구소) ;
  • 강성욱 (현대건설 대곡-소사 복선전철 제2공구) ;
  • 정재훈 (현대건설 기술연구소) ;
  • 이재원 (현대건설 기술연구소) ;
  • 신영진 (현대건설 기술연구소)
  • Received : 2022.12.21
  • Accepted : 2023.03.13
  • Published : 2023.03.31

Abstract

The use of TBM (Tunnel boring machine) has increased worldwide due to its performance together with the benefit of being safely and environmentally friendly compared to conventional tunneling. In particular, EPB (Earth Pressure Balanced) TBM is widely used because it can be applied to various grounds compared to Open TBM. Also EPB TBM has a simple mechanical structure and advantages in cost, requires less ground area than Slurry TBM. EPB TBM has advantages in soft ground, and more importantly, can extend its applicability by use of appropriate soil conditioning, which improves mechanical and hydrological properties of excavated soil and increases the excavation performance of EPB TBM. Various studies suggested the proper mixing ratio and injection ratio, but almost they are limited to laboratory test under atmospheric pressure such as slump test. Actual field conditions may differ depending on the ground and mechanical condition. In this study, first the amount of used soil conditioning used in the field with various grounds from hard rock to soft ground was estimated through laboratory tests and compared with the estimate in design stage. And also it was compared with the amount used during actual excavation. In addition, experience of soil conditioning for the problems of cutter head clogging and groundwater inrush that occurred during excavation is discussed. Finally, lesson learned for the use of soil conditioning in difficult ground condition such as mixed ground are reviewed.

기존 재래식 굴착 대비 안전성과 친환경의 이점으로 TBM (Tunnel Boring Machine)의 사용이 전 세계적으로 증가하였다. 특히 EPB (Earth Pressure Balanced) TBM의 경우 Open TBM 대비 다양한 지반에 적용이 가능하고 Slurry TBM에 비해 지상부지가 적게 필요하고 장비의 구조가 간단하며 가격면에서도 이점이 있어 더욱 널리 사용되고 있다. EPB TBM은 주로 토사지반에 널리 사용되는데 사용될 수 있는 지반 범위를 넓히기 위해서 가장 중요한 것은 적절한 첨가제의 사용이다. 첨가제를 사용해 버력을 소성유동화 시키는 것은 EPB TBM의 굴착성능을 높이는데 큰 도움을 줄 수 있다. 다양한 연구를 통해 첨가제의 적절한 배합비와 주입비율이 제시되어 있지만 이는 주로 slump test 등 대기압 상태에서의 실내시험에 국한되어 있어 실제 현장에서의 상황은 지반별, 장비 상태 등에 따라 상이할 수 있다. 본 연구에서는 먼저 경암부터 토사까지 다양한 지반을 가진 현장의 첨가제 사용량을 실내실험을 통해 추정하여 설계치 및 실제 굴진 시 사용량과 비교하였으며, 추가적으로 폐색, 지하수 유입 등 굴진 중 발생한 다양한 문제들에 대한 첨가제 사용을 통한 해결 방안을 모색하였다. 마지막으로 굴진이 어려운 복합지반에서의 첨가제 사용에 대한 제언을 수록하였다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 산업부 한국에너지기술평가원의 지원을 받아 수행된 연구 사업의 일환으로 수행되었습니다(No. 2021040101003C). 이에 감사드립니다.

References

  1. Budach, C., Thewes, M. (2015), "Application ranges of EPB shields in coarse ground based on laboratory research", Tunnelling and Underground Space Technology, Vol. 50, pp. 296-304. https://doi.org/10.1016/j.tust.2015.08.006
  2. EFNARC (2005), Specifications and guidelines for the use of specialist products for mechanized tunnelling (TBM) in soft ground and hard rock, Recommendation of European Federation of Producers and Contractors of Specialist Products for Structures, pp. 15-16.
  3. Hollmann, F.S., Thewes, M. (2013), "Assessment method for clay clogging and disintegration of fines in mechanised tunneling", Tunnelling and Underground Space Technology, Vol. 37, pp. 96-106. https://doi.org/10.1016/j.tust.2013.03.010
  4. Kim, D.Y., Kang, H.B., Shin, Y.J., Jung, J.H., Lee, J.W. (2018), "Development of testing apparatus and fundamental study for performance and cutting tool wear of EPB TBM in soft ground", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 2, pp. 453-467. https://doi.org/10.9711/KTAJ.2018.20.2.453
  5. Kwak, J.H., Lee, H.B., Hwang, B.H., Choi, J.H., Choi, H.S. (2022), "A laboratory pressurized vane test for evaluating rheological properties of excavated soil for EPB shield TBM: test apparatus and applicability", Journal of Korean Tunnelling and Underground Space Association, Vol. 24, No. 5, pp. 355-374. https://doi.org/10.9711/KTAJ.2022.24.5.355
  6. Langmaack, L. (2000), "Advanced Technology of soil conditioning in EPB shield tunneling", Proceedings of the North American Tunneling, Massachusetts, USA, pp. 525-542.
  7. Lee, H.B., Shin, D.H., Kim, D.Y., Shin, Y.J., Choi, H.S. (2019), "Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand", Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 4, pp. 545-560. https://doi.org/10.9711/KTAJ.2019.21.4.545
  8. Martinelli, D., Peila, D., Campa, E. (2015), "Feasibility study of tar sands conditioning for earth pressure balance tunneling", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 7, No. 6, pp. 684-690. https://doi.org/10.1016/j.jrmge.2015.09.002
  9. Peila, D., Oggeri, C., Borio, L. (2009), "Using the slump test to assess the behavior of conditioned soil for EPB tunneling", Environmental & Engineering Geoscience, Vol. 15, No. 3, pp. 167-174. https://doi.org/10.2113/gseegeosci.15.3.167
  10. Quebaud, S., Sibai, M., Henry, J.P. (1998), "Use of chemical foam for improvements in drilling by earthpressure balanced shields in granular soils", Tunnelling and Underground Space Technology, Vol. 13, No. 2, pp. 173-180. https://doi.org/10.1016/S0886-7798(98)00045-5
  11. Shin, Y.J., Kang, S.W., Lee, J.W., Kim, D.Y. (2021), "Challenges of EPB TBM in pressurized mixed grounds under Hangang river: effect of clogging", Proceedings of the 2021 World Congress on Advances in Structural Engineering and Mechanics (ASEM21), Seoul, pp. 6918-6933.
  12. Thewes, M. (1999), Adhesion of clays during tunnelling with slurry shields, Ph.D. Dissertation, Department of Civil Engineering, University of Wuppertal, Vol. 21, pp. 1-196.
  13. Vinai, R., Oggeri, C., Peila, D. (2008), "Soil conditioning of sand for EPB applications: a laboratory research", Tunnelling and Underground Space Technology, Vol. 23, No. 3, pp. 308-317. https://doi.org/10.1016/j.tust.2007.04.010