DOI QR코드

DOI QR Code

Green synthesis of Lead-Nickel-Copper nanocomposite for radiation shielding

  • B.M. Chandrika (Department of Physics, Government College for Women) ;
  • Holaly Chandrashekara Shastry Manjunatha (Department of Physics, Government College for Women) ;
  • R. Munirathnam (Department of Physics, Government College for Women) ;
  • K.N. Sridhar (Department of Physics, Government First Grade College) ;
  • L. Seenappa (Department of Physics, Government College for Women) ;
  • S. Manjunatha (Department of Chemistry, B.M.S. College of Engineering) ;
  • A.J. Clement Lourduraj (Department of Physics, St. Joseph's College (Autonomous), Affiliated To Bharathidasan University)
  • Received : 2023.06.14
  • Accepted : 2023.08.26
  • Published : 2023.12.25

Abstract

For the first time Pb, Ni, and Cu nanocomposites were synthesized by versatile solution combustion synthesis using Aloevera extract as a reducing agent, to study the potential applications in X-ray/gamma, neutron, and Bremsstrahlung shielding. The synthesized Lead-Nickel-Copper (LNC) nanocomposites were characterized by PXRD, SEM, UV-VIS, and FTIR for the confirmation of successful synthesis. PXRD analysis confirmed the formation of multiphase LNC NCs and the Scherrer equation and the W-H plot gave the average crystal sizes of 19 nm and 17 nm. Surface morphology using SEM and EDX confirmed the presence of LNC NCs. Strong absorption peaks were analyzed by UV visible spectroscopy and the direct energy gap is found to be 3.083 eV. Functional groups present in the LNC NCs were analyzed by FTIR spectroscopy. X-ray/gamma radiation shielding properties were measured using NaI(Tl) detector coupled with MCA. It is found to be very close to Pb. Neutron shielding parameters were compared with traditional shielding materials and found LNC NCs are better than lead and concrete. Secondary radiation shielding known as Bremsstrahlung shielding characteristics also studied and found that LNC NCs are best in secondary radiation shielding. Hence LNC NCs find shielding applications in ionizing radiation such as X-ray/gamma and neutron radiation.

Keywords

References

  1. M.I. Sayyed, N. Almousa, M. Elsafi, Preparation of mortar with Fe2O3 nanoparticles for radiation shielding application, Coatings 12 (9) (2022) 1329. 
  2. M. Donya, M. Radford, A. ElGuindy, D. Firmin, M.H. Yacoub, Radiation in medicine: Origins, risks and aspirations, Glob. Cardiol. Sci. Pract. 2014 (4) (2015) 57. 
  3. B. Aygun, Neutron and gamma radiation shielding Ni based new type super alloys development and production by Monte Carlo simulation technique, Radiat. Phys. Chem. 188 (2021) 109630. 
  4. M. Dong, S. Zhou, X. Xue, M.I. Sayyed, D. Tishkevich, A. Trukhanov, C. Wang, Study of comprehensive shielding behaviors of chambersite deposit for neutron and gamma ray, Progress Nucl. Energy 146 (2022) 104155. 
  5. M. Dong, X. Xue, H. Yang, D. Liu, C. Wang, Z. Li, A novel comprehensive utilization of vanadium slag: As gamma ray shielding material, J. Hazard. Mater. 318 (2016) 751-757.  https://doi.org/10.1016/j.jhazmat.2016.06.012
  6. S.A. Thibeault, J.H. Kang, G. Sauti, C. Park, C.C. Fay, G.C. King, Nanomaterials for radiation shielding, Mrs Bull. 40 (10) (2015) 836-841.  https://doi.org/10.1557/mrs.2015.225
  7. J. Xie, C. Wang, F. Zhao, Z. Gu, Y. Zhao, Application of multifunctional nanomaterials in radioprotection of healthy tissues, Adv. Healthc. Mater. 7 (20) (2018) 1800421. 
  8. S.R. Dhakate, K.M. Subhedar, B.P. Singh, Polymer nanocomposite foam filled with carbon nanomaterials as an efficient electromagnetic interference shielding material, Rsc Adv. 5 (54) (2015) 43036-43057.  https://doi.org/10.1039/C5RA03409D
  9. R. A. Abu Saleem, N. Abdelal, A. Alsabbagh, M. Al-Jarrah, F. Al-Jawarneh, Radiation shielding of fiber reinforced polymer composites incorporating lead nanoparticles-An empirical approach, Polymers 13 (21) (2021) 3699. 
  10. K.H. Al-Attiyah, A. Hashim, S.F. Obaid, Fabrication of novel (carboxy methyl cellulose-polyvinylpyrrolidone-polyvinyl alcohol)/lead oxide nanoparticles: Structural and optical properties for gamma rays shielding applications, Int. J. Plastics Technol. 23 (1) (2019) 39-45. 
  11. A. Hashim, A. Hadi, Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications, Ukrainian J. Phys. 62 (11) (2017) 978. 
  12. A.M. El-Khatib, M.I. Abbas, S.I. Hammoury, M.M. Gouda, K. Zard, M. Elsafi, Effect of PbO-nanoparticles on dimethyl polysiloxane for use in radiation shielding applications, Sci. Rep. 12 (1) (2022) 1-13.  https://doi.org/10.1038/s41598-022-20103-z
  13. A.M. El-Khatib, A.S. Doma, M.S. Badawi, A.E. Abu-Rayan, N.S. Aly, J.S. Alzahrani, M.I. Abbas, Conductive natural and waste rubbers composites-loaded with lead powder as environmental flexible gamma radiation shielding material, Mater. Res. Express 7 (10) (2020) 105309. 
  14. Y.M. Abbas, A.M. El-Khatib, M.S. Badawi, M.T. Alabsy, O.M. Hagag, Gamma attenuation through nano lead-nano copper PVC composites, Nucl. Technol. Radiat. Protection 36 (1) (2021) 50-59.  https://doi.org/10.2298/NTRP210110001A
  15. A.F. Osman, H. El Balaa, O. El Samad, R. Awad, M.S. Badawi, Assessment of X-ray shielding properties of polystyrene incorporated with different nano-sizes of PbO, Radiat. Environ. Biophys. 62 (2) (2023) 235-251.  https://doi.org/10.1007/s00411-023-01017-4
  16. G.A. Alharshan, D.A. Aloraini, M.A. Elzaher, M.S. Badawi, M.T. Alabsy, M.I. Abbas, A.M. El-Khatib, A comparative study between nano-cadmium oxide and lead oxide reinforced in high density polyethylene as gamma rays shielding composites, Nucl. Technol. Radiat. Prot. 35 (1) (2020) 42-49.  https://doi.org/10.2298/NTRP2001042A
  17. A.M. El-Khatib, M.S. Hamada, M.T. Alabsy, Y.M. Youssef, M. Abd Elzaher, M.S. Badawi, M. Fayez-Hassan, Y.N. Kopatch, I.N. Ruskov, M.I. Abbas, Fast and thermal neutrons attenuation through micro-sized and nano-sized CdO reinforced HDPE composites, Radiat. Phys. Chem. 180 (2021) 109245. 
  18. C.V. More, P.P. Pawar, M.S. Badawi, A.A. Thabet, Extensive theoretical study of gamma-ray shielding parameters using epoxy resin-metal chloride mixtures, Nucl. Technol. Radiat. Prot. 35 (2) (2020) 138-149.  https://doi.org/10.2298/NTRP2002138M
  19. A.M. El-Khatib, Y.M. Abbas, M.S. Badawi, O.M. Hagag, M.T. Alabsy, Gamma radiation shielding properties of recycled polyvinyl chloride composites reinforced with micro/nano-structured PbO and CuO particles, Phys. Scr. 96 (12) (2021) 125316. 
  20. A. Obeid, H.E.L. Balaa, O.E.L. Samad, R. Awad, M.S. Badawi, Attenuation parameters of HDPE filled with different nano-size and bulk WO3 for X-ray shielding applications, Eur. Phys. J. Plus 137 (11) (2022) 1229. 
  21. A. Obeid, B.H. El, S.O. El, Z. Alsayed, R. Awad, M.S. Badawi, Effects of different nano size and bulk WO3 enriched by HDPE composites on attenuation of the X-ray narrow spectrum, Nucl. Technol. Radiat. Prot. 36 (4) (2021) 315-328.  https://doi.org/10.2298/NTRP2104315O
  22. B.C. Reddy, H.C. Manjunatha, Y.S. Vidya, K.N. Sridhar, U.M. Pasha, L. Seenappa, C. Mahendrakumar, B. Sadashivamurthy, N. Dhananjaya, B. Sankarshan, et al., Synthesis and characterization of multi functional nickel ferrite nano-particles for X-ray/gamma radiation shielding, display and antimicrobial applications, J. Phys. Chem. Solids 159 (2021) 110260. 
  23. Y. Zhan, X. Hao, L. Wang, X. Jiang, Y. Cheng, C. Wang, Y. Meng, H. Xia, Z. Chen, Superhydrophobic and flexible silver nanowire-coated cellulose filter papers with sputter-deposited nickel nanoparticles for ultrahigh electromagnetic interference shielding, ACS Appl. Mater. Interfaces 13 (12) (2021) 14623-14633.  https://doi.org/10.1021/acsami.1c03692
  24. K. Sathish, H. Manjunatha, Y. Vidya, K. Sridhar, L. Seenappa, B.C. Reddy, S.A.C. Raj, P.D. Gupta, X-rays/gamma rays radiation shielding properties of Barium-Nickel-Iron oxide nanocomposite synthesized via low temperature solution combustion method, Radiat. Phys. Chem. 194 (2022) 110053, URL https://www.sciencedirect.com/science/article/pii/S0969806X22000950. 
  25. V.P. Singh, N.M. Badiger, Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons, Glass Phys. Chem. 41 (3) (2015) 276-283.  https://doi.org/10.1134/S1087659615030177
  26. M. Saini, R. Shukla, A. Kumar, Cd2+ substituted nickel ferrite doped polyaniline nanocomposites as effective shield against electromagnetic radiation in X-band frequency, J. Magn. Magn. Mater. 491 (2019) 165549. 
  27. H.O. Tekin, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, O. Agar, T.T. Erguzel, M.I. Sayyed, An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide substituted bioactive glasses, Ceram. Int. 45 (8) (2019) 9934-9949.  https://doi.org/10.1016/j.ceramint.2019.02.036
  28. S. Sim, D. Jeon, D.H. Kim, W. sung Yum, S. Yoon, J.E. Oh, Incorporation of copper slag in cement brick production as a radiation shielding material, Appl. Radiat. Isot. 176 (2021) 109851. 
  29. S.M.R.A. Esfahani, S.A. Zareei, M. Madhkhan, F. Ameri, J. Rashidiani, R.A. Taheri, Mechanical and gamma-ray shielding properties and environmental benefits of concrete incorporating GGBFS and copper slag, J. Build. Eng. 33 (2021) 101615. 
  30. O. Kilicoglu, Characterization of copper oxide and cobalt oxide substituted bioactive glasses for gamma and neutron shielding applications, Ceram. Int. 45 (17) (2019) 23619-23631.  https://doi.org/10.1016/j.ceramint.2019.08.073
  31. M.G. Dong, D.I. Tishkevich, M.Y. Hanfi, V.S. Semenishchev, M.I. Sayyed, S.Y. Zhou, S.S. Grabchikov, M.U. Khandaker, X.X. Xue, A.L. Zhaludkevich, et al., WCu composites fabrication and experimental study of the shielding efficiency against ionizing radiation, Radiat. Phys. Chem. (2022) 110175. 
  32. H.A. Saudi, H.M. Gomaa, M.I. Sayyed, I.V. Kityk, Investigation of bismuth silicate glass system modified by vanadium and copper cations for structural and gamma-ray shielding properties, SN Appl. Sci. 1 (3) (2019) 1-9.  https://doi.org/10.1007/s42452-019-0197-x
  33. N. Nagaraja, H.C. Manjunatha, L. Seenappa, K.N. Sridhar, H.B. Ramalingam, Radiation shielding properties of silicon polymers, Radiat. Phys. Chem. 171 (2020) 108723. 
  34. V.F. Sears, Neutron scattering lengths and cross sections, Neutron news 3 (3) (1992) 26-37.  https://doi.org/10.1080/10448639208218770
  35. X.F. Hao, A. Stroppa, P. Barone, A. Filippetti, C. Franchini, S. Picozzi, Structural and ferroelectric transitions in magnetic nickelate PbNiO3, New J. Phys. 16 (1) (2014) 015030. 
  36. H. Yanagi, J. Tate, R. Nagarajan, A.W. Sleight, Electrical and optical properties of PbCu2O2, Solid State Commun. 122 (6) (2002) 295-297.  https://doi.org/10.1016/S0038-1098(02)00143-6
  37. B.M. Chandrika, H.C. Manjunatha, L. Seenappa, R. Munirathnam, K.N. Sridhar, S. Manjunatha, A.J.C. Lourduraj, Aloe vera-mediated green synthesis of bismuth-zinc-iron nanocomposite for radiation shielding applications, J. Phys. Chem. Solids (2023) 111538. 
  38. M. Veerapandian, S. Sadhasivam, J. Choi, K. Yun, Glucosamine functionalized copper nanoparticles: Preparation, characterization and enhancement of anti-bacterial activity by ultraviolet irradiation, Chem. Eng. J. 209 (2012) 558-567. 
  39. Z. Wang, M.W. Urban, Facile UV-healable polyethylenimine-copper (C 2 H 5 N-Cu) supramolecular polymer networks, Polymer Chem. 4 (18) (2013) 4897-4901.  https://doi.org/10.1039/C2PY20844J
  40. Z. Yuan, M. Peng, Y. He, E.S. Yeung, Functionalized fluorescent gold nanodots: Synthesis and application for Pb 2+ sensing, Chem. Commun. 47 (43) (2011) 11981-11983. 
  41. M.A.M. Ibrahim, R.M. Al Radadi, Role of glycine as a complexing agent in nickel electrodeposition from acidic sulphate bath, Int. J. Electrochem. Sci. 10 (6) (2015) 4946. 
  42. A.M. Saviano, F.R. Lourenco, Uncertainty evaluation for determining linezolid in injectable solution by UV spectrophotometry, Measurement 46 (10) (2013) 3924-3928.  https://doi.org/10.1016/j.measurement.2013.08.005
  43. D.H.K. Reddy, K. Seshaiah, A.V.R. Reddy, S.M. Lee, Optimization of Cd (II), Cu (II) and Ni (II) biosorption by chemically modified Moringa oleifera leaves powder, Carbohydr. Polymers 88 (3) (2012) 1077-1086.  https://doi.org/10.1016/j.carbpol.2012.01.073
  44. P.X. Sheng, Y.-P. Ting, J.P. Chen, L. Hong, Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms, J. Colloid Interface Sci. 275 (1) (2004) 131-141. 
  45. S.J. Kleinubing, R.S. Vieira, M.M. Beppu, E. Guibal, M.G.C.d. Silva, Characterization and evaluation of copper and nickel biosorption on acidic algae Sargassum filipendula, Mater. Res. 13 (2010) 541-550.  https://doi.org/10.1590/S1516-14392010000400018
  46. R. Singh, R. Chadetrik, R. Kumar, K. Bishnoi, D. Bhatia, A. Kumar, N.R. Bishnoi, N. Singh, Biosorption optimization of lead (II), cadmium (II) and copper (II) using response surface methodology and applicability in isotherms and thermodynamics modeling, J. Hazard. Mater. 174 (1-3) (2010) 623-634.  https://doi.org/10.1016/j.jhazmat.2009.09.097
  47. S. Selvi, G. Venkataiah, S. Arunkumar, G. Muralidharan, K. Marimuthu, Structural and luminescence studies on Dy3+ doped lead boro-telluro-phosphate glasses, Physica B 454 (2014) 72-81.  https://doi.org/10.1016/j.physb.2014.07.018
  48. K.M. Aiswarya, T. Raguram, K.S. Rajni, Synthesis and characterisation of nickel cobalt sulfide nanoparticles by the solvothermal method for dye-sensitized solar cell applications, Polyhedron 176 (2020) 114267. 
  49. R.L. Frost, J. Cejka, J. Sejkora, J. Plasil, S. Bahfenne, S.J. Palmer, Raman spectroscopy of the basic copper arsenate mineral: Euchroite, J. Raman Spectrosc.: Int. J. Original Work Aspects Raman Spectrosc., Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 41 (5) (2010) 571-575. 
  50. M.S. Badawi, A numerical simulation method for calculation of linear attenuation coefficients of unidentified sample materials in routine gamma ray spectrometry, Nucl. Technol. Radiat. Protect. 30 (4) (2015) 249-259.  https://doi.org/10.2298/NTRP1504249B
  51. K.V. Sathish, H.C. Manjunatha, Y.S. Vidya, K.N. Sridhar, L. Seenappa, B.C. Reddy, S.A.C. Raj, P.D. Gupta, X-rays/gamma rays radiation shielding properties of barium-nickel-Iron oxide nanocomposite synthesized via low temperature solution combustion method, Radiat. Phys. Chem. 194 (2022) 110053. 
  52. H.C. Manjunatha, K.V. Sathish, L. Seenappa, D. Gupta, S.A.C. Raj, A study of X-ray, gamma and neutron shielding parameters in Si-alloys, Radiat. Phys. Chem. 165 (2019) 108414. 
  53. H.C. Manjunatha, B.M. Chandrika, Beta-induced bremsstrahlung shielding parameters in various types of steels, Radiat. Eff. Defects Solids 174 (5-6) (2019) 542-547.  https://doi.org/10.1080/10420150.2019.1619732
  54. B.M. Chandrika, H.C. Manjunatha, K.N. Sridhar, H. Chikka, Beta-induced bremsstrahlung shielding parameters in various types of steels, in: Proceedings of the National Conference on Radiation Physics, 2017. 
  55. H.C. Manjunatha, Dose assessment of bremsstrahlung induced by beta-emitting radioisotopes of uranium-238 series and lead in human tissues, Isotopes Environ. Health Stud. 50 (4) (2014) 555-564.  https://doi.org/10.1080/10256016.2014.952295
  56. H.C. Manjunatha, K.N. Sridhar, Empirical formula for neutron scattering lengths and cross sections, Nucl. Instrum. Methods Phys. Res. A 877 (2018) 349-354. https://doi.org/10.1016/j.nima.2017.10.019