DOI QR코드

DOI QR Code

Degradation analysis of horizontal steam generator tube bundles through crack growth due to two-phase flow induced vibration

  • Received : 2023.02.21
  • Accepted : 2023.08.24
  • Published : 2023.12.25

Abstract

A correct understanding of vibration-based degradation is crucial from the standpoint of maintenance for Steam Generators (SG) as crucial mechanical equipment in nuclear power plants. This study has established a novel approach to developing a model for investigating tube bundle degradation according to crack growth caused by two-phase Flow-Induced Vibration (FIV). An important step in the approach is to calculate the two-phase flow field parameters between the SG tube bundles in various zones using the porous media model to determine the velocity and vapor volume fraction. Afterward, to determine the vibration properties of the tube bundles, the Fluid-Solid Interaction (FSI) analysis is performed in eighteen thermal-hydraulic zones. Tube bundle degradation based on crack growth using the sixteen most probable initial cracks and within each SG thermal-hydraulic zone is performed to calculate useful lifetime. Large Eddy Simulation (LES) model, Paris law, and Wiener process model are considered to model the turbulent crossflow around the tube bundles, simulation of elliptical crack growth due to the vibration characteristics, and estimation of SG tube bundles degradation, respectively. The analysis shows that the tube deforms most noticeably in the zone with the highest velocity. As a result, cracks propagate more quickly in the tube with a higher height. In all simulations based on different initial crack sizes, it was observed that zone 16 experiences the greatest deformation and, subsequently, the fastest degradation, with a velocity and vapor volume fraction of 0.5 m/s and 0.4, respectively.

Keywords

References

  1. A. Rabiee, A.H. Kamalinia, K. Haddad, Horizontal steam generator thermal hydraulic simulation in typical steady and transient conditions, Nucl. Eng. Des. 305 (2016), https://doi.org/10.1016/j.nucengdes.2016.06.004.
  2. A. Rabiee, A.H. Kamalinia, K. Hadad, Two-phase flow field simulation of horizontal steam generators, Nucl. Eng. Technol. 49 (1) (2017), https://doi.org/10.1016/j. net.2016.08.008, 10.1016/J.NUCENGDES.2019.04.018.
  3. J. Hu, X. Ning, S. Sun, F. Li, J. Ma, W. Zhang, Fluid-structure coupled analysis of flow-induced vibrations in three dimensional elastic hydrofoils, Mar. Struct. 84 (2022), 103220, https://doi.org/10.1016/J.MARSTRUC.2022.103220.
  4. Z. Quan, K. Zhang, Z. Xiong, H. Zu, H. Gu, Y. Xie, Experimental study on cross flow induced vibration response of four-span straight tube bundle with TSP or AVB supports, Nucl. Eng. Des. 349 (2019) 8-19. https://doi.org/10.1016/j.nucengdes.2019.04.018
  5. D. Chen, P. Marzocca, Q. Xiao, Z. Zhan, C. Gu, Vortex-induced vibration on a low mass ratio cylinder with a nonlinear dissipative oscillator at moderate Reynolds number, J. Fluid Struct. 99 (2020), 103160, https://doi.org/10.1016/J.JFLUIDSTRUCTS.2020.103160.
  6. P. Wang, W. Zhao, J. Jiang, X. Wang, S. Li, X. Luo, Experimental and numerical investigations of flow-induced vibration of tube arrays subjected to cross flow, Int. J. Pres. Ves. Pip. 176 (2019), 103956, https://doi.org/10.1016/J.IJPVP.2019.103956.
  7. T. Nazari, A. Rabiee, H. Kazeminejad, Two-way fluid-structure interaction simulation for steady-state vibration of a slender rod using URANS and LES turbulence models, Nucl. Eng. Technol. 51 (2) (2019) 573-578, https://doi.org/10.1016/J.NET.2018.10.011.
  8. T. Nazari, A. Rabiee, H. Kazeminejad, Flow-induced vibration analysis of nuclear fuel rods using equivalent fuel element model, Nucl. Eng. Des. 363 (2020), 110639, https://doi.org/10.1016/J.NUCENGDES.2020.110639.
  9. A. Ramachandra Murthy, S. Vishnuvardhan, K.v. Anjusha, P. Gandhi, P.K. Singh, Prediction of fatigue crack initiation life in SA312 Type 304LN austenitic stainless steel straight pipes with notch, Nucl. Eng. Technol. 54 (5) (2022) 1588-1596, https://doi.org/10.1016/J.NET.2021.11.011.
  10. A.R. Murthy, P. Gandhi, S. Vishnuvardhan, G. Sudharshan, Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading, Nucl. Eng. Technol. 52 (12) (2020) 2949-2957, https://doi.org/10.1016/J.NET.2020.06.001.
  11. H. Liang, R. Zhan, D. Wang, C. Deng, B. Guo, X. Xu, Fatigue crack growth under overload/underload in different strength structural steels, J. Constr. Steel Res. 192 (2022), 107213, https://doi.org/10.1016/J.JCSR.2022.107213.
  12. Q. Niu, S.X. Yang, Study on fatigue degradation behavior of a cracked rotor subjected to lateral vibration, Shock Vib. (2018), https://doi.org/10.1155/2018/3239523, 2018.
  13. M. Salahi Nezhad, D. Floros, F. Larsson, E. Kabo, A. Ekberg, Numerical predictions of crack growth direction in a railhead under contact, bending and thermal loads, Eng. Fract. Mech. 261 (2022), 108218, https://doi.org/10.1016/J.ENGFRACMECH.2021.108218.
  14. Z.H. Li, X.Y. Wang, C. Hong, Y.H. Lu, T. Shoji, Fatigue crack initiation and propagation behavior of Inconel Alloy 690TT steam generator tube, Mater. Sci. Eng., A 811 (2021), 141090, https://doi.org/10.1016/J.MSEA.2021.141090.
  15. J.A. Balbin, V. Chaves, C. Madrigal, A. Navarro, Crack paths for mild steel specimens with circular holes in high cycle fatigue, Procedia Struct. Integr. 39 (2022) 111-119, https://doi.org/10.1016/J.PROSTR.2022.03.079.
  16. M.A. Farsi, P. Gholami, Fatigue crack growth analysis via Wiener degradation model with random Effects, Amirkabir (J. Sci. Technol. (2020), https://doi.org/10.22060/mej.2020.17437.6596.
  17. T.K. Lin, M.H. Yu, An experimental study on the crossflow vibration of a flexible cylinder in cylinder arrays, Exp. Therm. Fluid Sci. 29 (4) (2005) 523-536, https://doi.org/10.1016/J.EXPTHERMFLUSCI.2004.06.004.
  18. A.C.O. Miranda, M.A. Meggiolaro, J.T.P. Castro, L.F. Martha, T.N. Bittencourt, Fatigue life and crack path predictions in generic 2D structural components, Eng. Fract. Mech. 70 (10) (2003) 1259-1279, https://doi.org/10.1016/S0013-7944(02)00099-1.
  19. J. Lukacs, Fatigue crack growth tests on type 321 austenitic stainless steel in corrosive environment and at elevated temperature, Procedia Eng. 2 (1) (2010) 1201-1210, https://doi.org/10.1016/J.PROENG.2010.03.130.