DOI QR코드

DOI QR Code

Study on the characteristics of airborne gross alpha and gross beta activities in the vicinity of nuclear facilities

  • Da-Young Gam (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Chae-yeon Lee (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Ji-Young Park (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Hyuncheol Kim (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Jong-Myoung Lim (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute)
  • Received : 2023.03.17
  • Accepted : 2023.08.21
  • Published : 2023.12.25

Abstract

Continuous monitoring of radioactive substances over a prolonged duration can yield crucial insights into the levels of radiation exposure through inhalation, both in the vicinity of nuclear facilities and/or general environments. In this study, we evaluated long-term measurements (2012-2022) of gross alpha-beta activities in the air in the vicinity of nuclear facilities and reference site, distribution characteristics of temporal trends and spatial fluctuations, and factors affecting radioactivity levels. The average airborne gross-α (in mBq m-3) for onsite and off-site were 0.124 and 0.117, respectively, and the average airborne gross-β (in mBq m-3) measurements were 1.10 and 1.04, respectively. The activity ratio (AR) of gross-α and gross-β were calculated as a ratio of 0.12. The distribution characteristics of gross-α and gross-β activities in this study area are likely influenced by the meteorological factors and variations in airborne PM concentrations rather than the operation of the nuclear facility.

Keywords

Acknowledgement

This study was supported by the KAERI R&D Program (No. 521520) and was presented at the International Conference on Nuclear Analytical Techniques in 2022 (NAT2022), which was held in Daejeon, Korea, from Dec. 7 to 9, 2022.

References

  1. V. Gomez Escobar, F. Vera Rome, A. Martin Sanchez, Gross alpha- and beta-activities in rainwater and airborne particulate samples. Influence of rainfall and radon, J. Environ. Radioactivity 31 (1996) 173-185, https://doi.org/10.1016/0265-931X(95)00053-D.
  2. C. Duenas, M.C. Fernandez, E. Liger, J. Carretero, Gross alpha, gross beta activities and 7Be concentrations in surface air: analysis of their variations and prediction model, Atmos. Environ. 33 (1999) 3705-3715, https://doi.org/10.1016/S1352-2310(99)00172-7.
  3. C. Duenas, M.C. Fernandez, J. Carretero, E. Liger, S. Canete, Gross-α and gross-β activities in airborne particulate samples. Analysis and prediction models, Appl. Radiat. Isot. 54 (2001) 645-654, https://doi.org/10.1016/S0969-8043(00)00298-0.
  4. M. Garcia-Talavera, B. Quintana, E. Garcia-Diez, F. Fernandez, Studies on radioactivity in aerosols as a function of meteorological variables in Salamanca (Spain), Atmos. Environ. 35 (2001) 221-229, https://doi.org/10.1016/S1352-2310(00)00234-X.
  5. F. Hernandez, J. Hernandez-Armas, A. Catalan, J.C. Fernandez -Aldecoa, L. Karlsson, Gross alpha, gross beta activities and gamma emitting radionuclides composition of airborne particulate samples in an oceanic island, Atmos. Environ. 39 (2005) 4057-4066, https://doi.org/10.1016/j.atmosenv.2005.03.035.
  6. M.E. Kitto, G.M. Hartt, E.A. Gillen, Airborne activities of gross beta, 7Be, and 131I in New York, J. Radioanal. Nucl. Chem. 264 (2) (2005) 387-392, https://doi.org/10.1007/s10967-005-0726-5.
  7. F. Arkian, M. Salahinejad, J. Amidi, Analysis of gross alpha, gross beta activities and beryllium-7 concentrations in surface air their variation and statistical prediction model, Iran, J. Radiat. Res. 4 (2006) 155-159, https://doi.org/10.1007/s10661-007-9870-4.
  8. S. Akbulut, B. Krupinska, A. Worobiec, U. Cevik, H. Taskin, R. Van Grieken, L. Samek, E. Wilkoj'c, Gross alpha and beta activities of airborne particulate samples from Wawel Royal Castle Museum in Cracow, Poland, J. Radioanal. Nucl. Chem. 295 (2013) 1567-1573, https://doi.org/10.1007/s10967-012-1983-8.
  9. M.A. Duch, I. Serrano, V. Cabello, A. Camacho, Comparison of different sampling methods for the determination of low-level radionuclides in air, Appl. Radiat. Isot. 109 (2016) 456-459, https://doi.org/10.1016/j.apradiso. 2015.11.042.
  10. A. Russo, A. Borras, Comparison of dimension reduction techniques applied to the analysis of airborne radionuclide activity concentration, J. Environ. Radioactivity (2022), 106813, https://doi.org/10.1016/j.jenvrad.2022.106813, 244-245(2022).
  11. Korea Atomic Energy Research Institute (KAERI), The Annual Report on the Environmental Radiological Surveillance and Assessment Around the Korea Atomic Energy Research Institute, 2021. KAREI/RR-4756/2021.
  12. International Atomic Energy Agency (IAEA), IAEA Analytical Quality in Nuclear Applications Series No. 48. IAEA/AQ/48.
  13. International Organization for Standardization (ISO), ISO 10704:2019(E) Water Quality - Gross Alpha and Gross Beta Activity - Test Method Using Thin Source Deposit.
  14. Y.J. Huang, Y.L. Tao, J. Lin, Z.H. S.G, Annual cycle of gross β activities in aerosol around Daya Bay area, China, Chemosphere 75 (2009) 929-933, https://doi.org/10.1016/j.chemosphere.2009. 01.022.
  15. M. Saez-Munoz, M. del Carmen Bas, J. Ortiz, S. Martorell, Analysis of the evolution of gross alpha and gross beta activities in airborne samples in Valencia (Spain), J. Environ. Radioactivity 183 (2018) 94-101, https://doi.org/10.1016/j.jenvrad.2017.12.019.
  16. M. Cabello, C. Duenas, E. Liger, E. Gordo, S. Canete, Variables influencing the gross alpha and gross beta activities in airborne particulate samples in Malaga, Spain, J. Radioanal. Nucl. Chem. 315 (2018) 299-307, https://doi.org/10.1007/s10967-017-5674-3.
  17. Y.H. Yang, G.B. Lee, S.H. Shon, J.Y. Kim, Assessment of long-term trend for environmental radioactivity around Wolsong nuclear power plant in Korea, Ann. Nucl. Energy 77 (2015) 231-237, https://doi.org/10.1016/j.anucene.2014.09.061.
  18. T. Nguyen Van, B. Vu Ngoc, T.H.N. Phong, H.L. Cong, L.T.T. Hong, Radioactivity in airborne particulate and rainwater samples and deposition to ground in Ho Chi Minh City (Vietnam), J. Radioanal. Nucl. Chem. 316 (2018) 513-525, https://doi.org/10.1007/s10967-018-5806-4.
  19. C. Duenas, M.C. Fernandez, J. Carretero, E. Liger, S. Canete, Long-term variation of the concentrations of long-lived Rn descendants and cosmogenic 7Be and determination of the MRT of aerosols, Atmos. Environ. 38 (2004) 1291-1301, https://doi.org/10.1016/j.atmosenv.2003.11.029.
  20. N. Alegria, M.A. Hernandez-Ceballos, M. Herranz, R. Idoeta, F. Legarda, Five Years (2014-2018) of beta activity concentration and the impact of synoptic and local meteorological conditions in Bilbao (Northern Spain), Atmosphere 12 (2021) 1323, https://doi.org/10.3390/atmos12101323.
  21. M. Lopez-Perez, J.M. Lorenzo-Salazar, F.J. Exposito, J.P. Diaz, P. Salazar, Impact of a massive dust storm on the gross alpha, gross beta, 40K, 137Cs, 210Pb, 7Be activities measured in atmospheric aerosols collected in Tenerife, Canary Islands, Atmos, Environ 239 (2020), 117806, https://doi.org/10.1016/j.atmosenv.2020.117806.
  22. G. Lee, Y.G. Lee, E. Jeong, C.H. Ho, Roles of meteorological factors in inter-regional variations of fine and coarse PM concentrations over the Republic of Korea, Atmos. Environ. 264 (2021), 118706, https://doi.org/10.1016/j.atmosenv.2021.118706.
  23. J.M. Lim, J.H. Lee, J.H. Moon, Y.S. Chung, K.H. Kim, Source apportionment of PM10 at a small industrial area using Positive Matrix Factorization, Atmos. Res. 95 (2010) 88-100. https://doi:10.1016/j.atmosres.2009.08.009.