DOI QR코드

DOI QR Code

Non-iterative pulse tail extrapolation algorithms for correcting nuclear pulse pile-up

  • 투고 : 2023.04.08
  • 심사 : 2023.08.04
  • 발행 : 2023.12.25

초록

Radiation detection systems working at high count rates suffer from the overlapping of their output electric pulses, known as pulse pile-up phenomenon, resulting in spectrum distortion and degradation of the energy resolution. Pulse tail extrapolation is a pile-up correction method which tries to restore the shifted baseline of a piled-up pulse by extrapolating the overlapped part of its preceding pulse. This needs a mathematical model which is almost always nonlinear, fitted usually by a nonlinear least squares (NLS) technique. NLS is an iterative, potentially time-consuming method. The main idea of the present study is to replace the NLS technique by an integration-based non-iterative method (NIM) for pulse tail extrapolation by an exponential model. The idea of linear extrapolation, as another non-iterative method, is also investigated. Analysis of experimental data of a NaI(Tl) radiation detector shows that the proposed non-iterative method is able to provide a corrected spectrum quite similar with the NLS method, with a dramatically reduced computation time and complexity of the algorithm. The linear extrapolation approach suffers from a poor energy resolution and throughput rate in comparison with NIM and NLS techniques, but provides the shortest computation time.

키워드

과제정보

The author appreciates the technical support by Fatemeh NowrouzAlizadeh and Mosayeb Dehghani, the scientific staffs of the Shiraz University laboratories at the Radiation Research Center (RRC) and the Department of Mechanical Engineering, respectively.

참고문헌

  1. G.F. Knoll, Radiation Detection and Measurement, fourth ed., John Wiley & Sons, 2010.
  2. N. Tsoulfanidis, Measurement and Detection of Radiation, fourth ed., CRC Press, 2015.
  3. S.N. Ahmed, Physics and Engineering of Radiation Detection, second ed., Elsevier, 2014.
  4. L. Abbene, et al., Recent advances in the development of high-resolution 3D cadmium-zinc-telluride drift strip detectors, J. Synchrotron Radiat. 27 (6) (2020) 1564-1576. https://doi.org/10.1107/S1600577520010747
  5. L. Abbene, et al., Potentialities of high-resolution 3-D CZT drift strip detectors for prompt gamma-ray measurements in BNCT, Sensors 22 (4) (2022) 1502.
  6. P.W. Nicholson, Nuclear Electronics, John Wiley and Sons, Inc., London, 1974.
  7. M. Nakhostin, Signal Processing for Radiation Detectors, John Wiley & Sons, 2017.
  8. M.-R. Mohammadian-Behbahani, S. Saramad, Pile-up correction algorithm based on successive integration for high count rate medical imaging and radiation spectroscopy, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 897 (2018) 1-7. https://doi.org/10.1016/j.nima.2018.04.028
  9. M.-R. Mohammadian-Behbahani, S. Saramad, A comparison study of the pile-up correction algorithms, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 951 (2020), 163013.
  10. X. Wen, H. Yang, Study on a digital pulse processing algorithm based on template-matching for high-throughput spectroscopy, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 784 (2015) 269-273. https://doi.org/10.1016/j.nima.2014.11.008
  11. B. Loher, D. Savran, E. Fiori, M. Miklavec, N. Pietralla, M. Vencelj, High count rate γ-ray spectroscopy with LaBr3: Ce scintillation detectors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 686 (2012) 1-6. https://doi.org/10.1016/j.nima.2012.05.051
  12. J. Liu, et al., Real time digital implementation of the high-yield-pileup-event-recover (HYPER) method, in: Nuclear Science Symposium Conference Record, vol. 6, 2007, pp. 4230-4232.
  13. S. Marrone, et al., Pulse shape analysis of liquid scintillators for neutron studies, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 490 (1-2) (Sep. 2002) 299-307.
  14. W. Guo, R.P. Gardner, C.W. Mayo, A study of the real-time deconvolution of digitized waveforms with pulse pile up for digital radiation spectroscopy, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 544 (3) (2005) 668-678. https://doi.org/10.1016/j.nima.2004.12.036
  15. F. Belli, B. Esposito, D. Marocco, M. Riva, Y. Kaschuck, G. Bonheure, A method for digital processing of pile-up events in organic scintillators, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 595 (2) (2008) 512-519. https://doi.org/10.1016/j.nima.2008.06.045
  16. X. Wang, Q. Xie, Y. Chen, M. Niu, P. Xiao, Advantages of digitally sampling scintillation pulses in pileup processing in PET, IEEE Trans. Nucl. Sci. 59 (3) (2012) 498-506. https://doi.org/10.1109/TNS.2012.2183646
  17. M.E. Hammad, et al., Pile-up correction algorithm for high count rate gamma ray spectroscopy, Appl. Radiat. Isot. 151 (2019) 196-206. https://doi.org/10.1016/j.apradiso.2019.06.003
  18. J. Pechousek, et al., Software emulator of nuclear pulse generation with different pulse shapes and pile-up, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 828 (2016) 81-85. https://doi.org/10.1016/j.nima.2016.05.032
  19. M. Lee, et al., Pulse pileup correction method for gamma-ray spectroscopy in high radiation fields, Nucl. Eng. Technol. 52 (5) (2020) 1029-1035. https://doi.org/10.1016/j.net.2019.12.003
  20. M.R. Mohammadian-Behbahani, A pulse pile-up correction method for high-rate radiation spectroscopy, in: 1st International & 28th National Conference on Nuclear Science and Technology, 2022. ICNST22.
  21. M.R. Mohammadian-Behbahani, Pulse pile-up correction: a comparison between pulse-tail linear extrapolation and trapezoidal pulse shaping, in: 1st International & 28th National Conference on Nuclear Science and Technology, 2022. ICNST22.
  22. W. Xiao, A.T. Farsoni, H. Yang, D.H. Hamby, A new pulse model for NaI (Tl) detection systems, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 763 (2014) 170-173. https://doi.org/10.1016/j.nima.2014.06.022
  23. H.P. Gavin, The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems, Dep. Civ. Environ. Eng. Duke Univ. 19 (2019).
  24. M.-R. Mohammadian-Behbahani, S. Saramad, Integral-equation based methods for parameter estimation in output pulses of radiation detectors: application in nuclear medicine and spectroscopy, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 887 (2018) 7-12.
  25. K. Tittelbach-Helmrich, An integration method for the analysis of multiexponential transient signals, Meas. Sci. Technol. 4 (12) (1993) 1323.
  26. S.D. Foss, A Method of Exponential Curve Fitting by Numerical Integration, Biometrics, 1970, p. 815. -821.