DOI QR코드

DOI QR Code

Evaluation of the CNESTEN's TRIGA Mark II research reactor physical parameters with TRIPOLI-4® and MCNP

  • H. Ghninou (CEA, DES, IRESNE, DER, SPESI, LP2E) ;
  • A. Gruel (CEA, DES, IRESNE, DER, SPESI, LP2E) ;
  • A. Lyoussi (CEA, DES, IRESNE, DER, SPESI, LP2E) ;
  • C. Reynard-Carette (Aix Marseille University) ;
  • C. El Younoussi (National Center for Energy Sciences and Nuclear Technology, CNESTEN) ;
  • B. El Bakkari (National Center for Energy Sciences and Nuclear Technology, CNESTEN) ;
  • Y. Boulaich (National Center for Energy Sciences and Nuclear Technology, CNESTEN)
  • Received : 2022.11.21
  • Accepted : 2023.07.23
  • Published : 2023.12.25

Abstract

This paper focuses on the development of a new computational model of the CNESTEN's TRIGA Mark II research reactor using the 3D continuous energy Monte-Carlo code TRIPOLI-4 (T4). This new model was developed to assess neutronic simulations and determine quantities of interest such as kinetic parameters of the reactor, control rods worth, power peaking factors and neutron flux distributions. This model is also a key tool used to accurately design new experiments in the TRIGA reactor, to analyze these experiments and to carry out sensitivity and uncertainty studies. The geometry and materials data, as part of the MCNP reference model, were used to build the T4 model. In this regard, the differences between the two models are mainly due to mathematical approaches of both codes. Indeed, the study presented in this article is divided into two parts: the first part deals with the development and the validation of the T4 model. The results obtained with the T4 model were compared to the existing MCNP reference model and to the experimental results from the Final Safety Analysis Report (FSAR). Different core configurations were investigated via simulations to test the computational model reliability in predicting the physical parameters of the reactor. As a fairly good agreement among the results was deduced, it seems reasonable to assume that the T4 model can accurately reproduce the MCNP calculated values. The second part of this study is devoted to the sensitivity and uncertainty (S/U) studies that were carried out to quantify the nuclear data uncertainty in the multiplication factor keff. For that purpose, the T4 model was used to calculate the sensitivity profiles of the keff to the nuclear data. The integrated-sensitivities were compared to the results obtained from the previous works that were carried out with MCNP and SCALE-6.2 simulation tools and differences of less than 5% were obtained for most of these quantities except for the C-graphite sensitivities. Moreover, the nuclear data uncertainties in the keff were derived using the COMAC-V2.1 covariance matrices library and the calculated sensitivities. The results have shown that the total nuclear data uncertainty in the keff is around 585 pcm using the COMAC-V2.1. This study also demonstrates that the contribution of zirconium isotopes to the nuclear data uncertainty in the keff is not negligible and should be taken into account when performing S/U analysis.

Keywords

Acknowledgement

The authors would like to thank RIZZO Axel and BELLANGER-VILLARD Veronique of the Physics Studies Laboratory (LEPh), The French Alternative Energies and Atomic Energy Commission (CEA), Saint-Paul-lez-Durance, France, for providing the COMAC-V2.1 nuclear covariance matrices database that used to carry on the uncertainty quantification in the keff.

References

  1. A.E. Craft, B.A. Hilton, G.C. Papaioannou, Characterization of a neutron beam following reconfiguration of the neutron Radiography reactor (NRAD) core and addition of new fuel elements, Nucl. Eng. Technol. 48 (2016) 200-210, https://doi.org/10.1016/j.net.2015.10.006. 
  2. S.W. Morgan, J.C. King, C.L. Pope, Beam characterization at the neutron Radiography reactor, Nucl. Eng. Des. 265 (2013) 639-653, https://doi.org/10.1016/j.nucengdes.2013.08.059. 
  3. V. Radulovic, Y. Yamazaki, Z. Pastuovic, A. Sarbutt, K. Ambrozic, R. Bernat, Z. Eres, J. Coutinho, T. Ohshima, I. Capan, L. Snoj, Silicon carbide neutron detector testing at the JSI TRIGA reactor for enhanced border and port security, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 972 (2020), 164122, https://doi.org/10.1016/j.nima.2020.164122. 
  4. A. Gruel, K. Ambrozic, C. Destouches, V. Radulovic, A. Sardet, L. Snoj, Gamma-heating and gamma flux measurements in the JSI TRIGA reactor: results and prospects, IEEE Trans. Nucl. Sci. 67 (2020) 559-567, https://doi.org/10.1109/TNS.2020.2974968. 
  5. B. El Bakkari, B. Nacir, T. El Bardouni, C. El Younoussi, Y. Boulaich, H. Boukhal, Feasibility analysis of I-131 production in the Moroccan TRIGA research reactor, Ann. Nucl. Energy 78 (2015) 140-145, https://doi.org/10.1016/j.anucene.2014.11.044. 
  6. M.Q. Huda, M.S. Islam, M.M. Rahman, A. Haque, M. Uddin, Studies on the overall safety aspects during irradiation of TeO2 in the central thimble of the TRIGA research reactor, Ann. Nucl. Energy 36 (2009) 199-212, https://doi.org/10.1016/j.anucene.2008.11.013. 
  7. B. El Bakkari, B. Nacir, T. El Bardouni, C. El Younoussi, O. Merroun, A. Htet, Y. Boulaich, M. Zoubair, H. Boukhal, M. Chakir, Monte Carlo modelling of TRIGA research reactor, Radiat. Phys. Chem. 79 (2010) 1022-1030, https://doi.org/10.1016/j.radphyschem.2010.04.016. 
  8. B. El Bakkari, T. El Bardouni, O. Merroun, Ch. El Younoussi, Y. Boulaich, E. Chakir, Development of an MCNP-tally based burnup code and validation through PWR benchmark exercises, Ann. Nucl. Energy 36 (2009) 626-633, https://doi.org/10.1016/j.anucene.2008.12.025. 
  9. B. El Bakkari, T. El Bardouni, B. Nacir, C. El Younoussi, Y. Boulaich, H. Boukhal, M. Zoubair, Fuel burnup analysis for the Moroccan TRIGA research reactor, Ann. Nucl. Energy 51 (2013) 112-119, https://doi.org/10.1016/j.anucene.2012.07.030. 
  10. H. Ghninou, A. Gruel, A. Lyoussi, C. Reynard-Carette, C. El Younoussi, B. El Bakkari, B. Nacir, Y. Boulaich, H. Bounouira, Characterization of neutron reaction rates in different irradiation channels of the CNESTEN's TRIGA mark II research reactor, IEEE Trans. Nucl. Sci. 69 (2022) 1806-1814, https://doi.org/10.1109/TNS.2022.3174673. 
  11. E. Brun, F. Damian, C.M. Diop, E. Dumonteil, F.X. Hugot, C. Jouanne, Y.K. Lee, F. Malvagi, A. Mazzolo, O. Petit, J.C. Trama, T. Visonneau, A. Zoia, TRIPOLI-4®, CEA, EDF and AREVA reference Monte Carlo code, Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013, SNA + MC 2013. Pluri- and Trans-disciplinarity, Towards New Modeling and Numerical Simulation Paradigms, Ann. Nucl. Energy 82 (2015) 151-160, https://doi.org/10.1016/j.anucene.2014.07.053. 
  12. P. Archier, C. De Saint Jean, G. Nogu'ere, O. Litaize, P. Leconte, C. Bouret, COMAC: nuclear data covariance matrices library for reactor applications. PHYSOR - role React, Phys. Sustain. Future (2014). 
  13. M.B. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A.C. Kahler, D. L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D.A. Brown, R. Capote, A.D. Carlson, Y.S. Cho, H. Derrien, K. Guber, G.M. Hale, S. Hoblit, S. Holloway, T. D. Johnson, T. Kawano, B.C. Kiedrowski, H. Kim, S. Kunieda, N.M. Larson, L. Leal, J.P. Lestone, R.C. Little, E.A. McCutchan, R.E. MacFarlane, M. MacInnes, C. M. Mattoon, R.D. McKnight, S.F. Mughabghab, G.P.A. Nobre, G. Palmiotti, A. Palumbo, M.T. Pigni, V.G. Pronyaev, R.O. Sayer, A.A. Sonzogni, N.C. Summers, P. Talou, I.J. Thompson, A. Trkov, R.L. Vogt, S.C. van der Marck, A. Wallner, M. C. White, D. Wiarda, P.G. Young, ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (2011) 2887-2996, https://doi.org/10.1016/j.nds.2011.11.002. Special Issue on ENDF/B-VII.1 Library. 
  14. A. Santamarina, D. Bernard, The JEFF-3.1.1 Nuclear Data Library, 2009. JEFF Report 22. 
  15. J.C. Sublet, P. Ribon, M. Coste-Delclaux, CALENDF-2010: User Manual, 2011. Rapport CEA-R-6277. 
  16. L. Snoj, A. Kavcic, G. Zerovnik, M. Ravnik, Calculation of kinetic parameters for mixed TRIGA cores with Monte Carlo, Ann. Nucl. Energy 37 (2010) 223-229, https://doi.org/10.1016/j.anucene.2009.10.020. 
  17. Y. Nauchi, T. Kameyama, Development of calculation technique for iterated fission probability and reactor kinetic parameters using continuous-energy Monte Carlo method, J. Nucl. Sci. Technol. 47 (2010) 977-990, https://doi.org/10.1080/18811248.2010.9711662. 
  18. G. Truchet, P. Leconte, A. Santamarina, E. Brun, F. Damian, A. Zoia, Computing adjoint-weighted kinetics parameters in tripoli-4® by the iterated fission probability method, Ann. Nucl. Energy 85 (2015) 17-26, https://doi.org/10.1016/j.anucene.2015.04.025. 
  19. C. Brian Kiedrowski, Theory, Interface, Verification, Validation, and Performance of the Adjoint-Weighted Point Reactor Kinetics Parameter Calculations in MCNP. Los Alamos Natl. Lab. XCP-3 Monte Carlo Codes -UR-10-01700, 2010. 
  20. Y. Nauchi, T. Kameyama, Proposal of direct calculation of kinetic parameters βeff and based on continuous energy Monte Carlo method, J. Nucl. Sci. Technol. 42 (2005) 503-514, https://doi.org/10.1080/18811248.2004.9726417. 
  21. M.M. Bretscher, Evaluation of Reactor Kinetic Parameters without the Need for Perturbation Codes, 1997. 
  22. M.Q. Huda, M. Rahman, M.M. Sarker, S.I. Bhuiyan, Benchmark analysis of the TRIGA MARK II research reactor using Monte Carlo techniques, Ann. Nucl. Energy 31 (2004) 1299-1313, https://doi.org/10.1016/j.anucene.2004.02.005. 
  23. T. Matsumoto, N. Hayakawa, Benchmark analysis of triga mark ii reactivity experiment using a continuous energy Monte Carlo code mcnp, J. Nucl. Sci. Technol. 37 (2000) 1082-1087, https://doi.org/10.1080/18811248.2000.9714995. 
  24. H. Rehman, S.-I. Ahmad, Neutronics analysis of TRIGA Mark II research reactor, Nucl. Eng. Technol. 50 (2018) 35-42, https://doi.org/10.1016/j.net.2017.11.003. 
  25. L. Snoj, M. Ravnik, Power peakings in mixed TRIGA cores, Nucl. Eng. Des. 238 (2008) 2473-2479, https://doi.org/10.1016/j.nucengdes.2008.02.005. 
  26. H. Ziani, T. El Bardouni, M. Lahdour, M. El Barbari, H. El Yaakoubi, Y. Boulaich, Eigenvalue sensitivity and nuclear data uncertainty analysis for the Moroccan TRIGA Mark II research reactor using SCALE6.2 and MCNP6.2, Nucl. Eng. Des. 378 (2021), 111160, https://doi.org/10.1016/j.nucengdes.2021.111160. 
  27. C.M. Perfetti, B.T. Rearden, W.R. Martin, SCALE continuous-energy eigenvalue sensitivity coefficient calculations, Nucl. Sci. Eng. 182 (2016) 332-353, https://doi.org/10.13182/NSE15-12. 
  28. Y. Qiu, D. She, X. Tang, K. Wang, J. Liang, Computing eigenvalue sensitivity coefficients to nuclear data based on the CLUTCH method with RMC code, Ann. Nucl. Energy 88 (2016) 237-251, https://doi.org/10.1016/j.anucene.2015.11.007. 
  29. N. Hfaiedh, A. Santamarina, Determination of the optimized SHEM mesh for neutron transport calculations, M C 2005 Int. Top. Meet. Math. Comput. Supercomput. React. Phys. Nucl. Biol. Appl. (2005). 
  30. G. Rimpault, D. Plisson, J. Tommasi, R. Jacqmin, J.-M. Rieunier, D. Verrier, D. Biron, The ERANOS Code and Data System for Fast Reactor Neutronic Analyses 15, 2002. 
  31. G. Rimplaut, Algorithmic features of the ECCO Cell Code for treating heterogeneous fast reactor subassemblies, in: Proc. Int. Conf. Math. Comput. React. Phys. Environ. Anal., 1995. 
  32. C. De Saint Jean, P. Archier, E. Privas, G. Nogu'ere, O. Litaize, P. Leconte, Evaluation of Cross Section Uncertainties Using Physical Constraints: Focus on Integral Experiments. Nucl. Data Sheets, Special Issue on International Workshop on Nuclear Data Covariances, April 28 - May 1, 2014, Santa Fe, New Mexico, USA, 2015, pp. 178-184, https://doi.org/10.1016/j.nds.2014.12.031. t2.lanl.gov/cw2014 123. 
  33. A. Santamarina, D. Bernard, Re-estimation of nuclear data and reliable covariances using integral experiments. application to jeff3 library, in: MandC2017 - International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. MandC2017 - International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, 2017 (Jeju, South Korea). 
  34. M. Makhloul, H. Boukhal, E. Chakir, T. El Bardouni, M. Lahdour, M. Kaddour, A. Ahmed, A. Arectout, H. El Yaakoubi, Sensitivity and uncertainty quantification of neutronic integral data in the TRIGA Mark II research reactor, Nucl. Eng. Technol. 54 (2022) 523-531, https://doi.org/10.1016/j.net.2021.08.003. 
  35. B.T. Rearden, M.A. Jessee, SCALE Code System, 2016. ORNLTM-200539 Version 62. 
  36. X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, 2004. Version 5, LA-UR-03-1987.