DOI QR코드

DOI QR Code

Design and optimization of thermal neutron activation device based on 5 MeV electron linear accelerator

  • Mahnoush Masoumi (Department of Physics, K.N. Toosi University of Technology) ;
  • S. Farhad Masoudi (Department of Physics, K.N. Toosi University of Technology) ;
  • Faezeh Rahmani (Department of Physics, K.N. Toosi University of Technology)
  • Received : 2023.03.28
  • Accepted : 2023.07.31
  • Published : 2023.11.25

Abstract

The optimized design of a Neutron Activation Analysis (NAA) system, including Delayed Gamma NAA (DGNAA) and Prompt Gamma NAA (PGNAA), has been proposed in this research based on Mevex Linac with 5 MeV electron energy and 50 kW power as a neutron source. Based on the MCNPX 2.6 simulation, the optimized configuration contains; tungsten as an electron-photon converter, BeO as a photoneutron target, BeD2 and plexiglass as moderators, and graphite as a reflector and collimator, as well as lead as a gamma shield. The obtained thermal neutron flux at the beam port is equal to 2.06 × 109 (# /cm2.s). In addition, using the optimized neutron beam, the detection limit has been calculated for some elements such as H-1, B-10, Na-23, Al-27, and Ti-48. The HPGe Coaxial detector has been used to measure gamma rays emitted by nuclides in the sample. By the results, the proposed system can be an appropriate solution to measure the concentration and toxicity of elements in different samples such as food, soil, and plant samples.

Keywords

References

  1. Z. Alfassi, Activation Analysis, 1, CRC Press, 1990. 
  2. Z. Alfassi, Activation Analysis, 2, CRC Press, 1990. 
  3. L. Hamidatou, H. Slamene, T. Akhal, B. Zouranen, Concepts, instrumentation and techniques of neutron activation analysis, in: Imaging and Radioanalytical Techniques in Interdisciplinary Research-Fundamentals and Cutting Edge Applications, InTech, Rijeka, 2013, pp. 141-178. 
  4. N. Tsoulfanidis, Measurement and Detection of Radiation, 2010. 
  5. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010. 
  6. G. Molnar (Ed.), Handbook of Prompt Gamma Activation Analysis: with Neutron Beams, 1, Springer Science & Business Media, 2004. 
  7. T. Gutberlet, in: T. Bruckel (Ed.), Conceptual Design Report-Julich High Brilliance Neutron Source (HBS), Forschungszentrum Julich GmbH, Verlag, Zentralbibliothek, 2020. 
  8. I.A.E.A. Radia, Y. Rep, Neutron Generators for Analytical Purposes, IAEA radiation technology reports series, ISSN, 2012, pp. 2225-8833. 
  9. E. Rivera P, M.H.A. De Leon, V.M. Hernandez D, H.R. Vega C, T. Soto B, E. Gallego, A. Lorente, NAA Using the Photoneutrons of a Linac as a Neutron Source, 2012. 
  10. A. Sari, S. Garti, F. Laine, H. Makil, N. Dufour, R. Woo, et al., Detection and quantification of copper in scrap metal by linac-based neutron activation analysis, Appl. Radiat. Isot. 166 (2020), 109339. 
  11. A.V. Andreev, Y.M. Burmistrov, A.M. Gromov, E.S. Konobeevski, M. V. Mordovskoy, G.V. Solodukhov, et al., Electron linear accelerator LUE-8-5 with W-Be photoneutron target as a neutron source, ЭМИН-2012 20 (2012) 148. 
  12. M. Zolfaghari, S.F. Masoudi, F. Rahmani, Optimization of Linac-based neutron source for thermal neutron activation analysis, J. Radioanal. Nucl. Chem. 317 (3) (2018) 1477-1483.  https://doi.org/10.1007/s10967-018-6041-8
  13. M.M. Rafiei, H. Tavakoli-Anbaran, Feasibility of using 10 MeV electron LINAC for explosives detection based on thermal neutron activation analysis: a Monte Carlo study, Europ. Phys. J. Plus 135 (8) (2020) 1-15. 
  14. S. Turhan, H.A.L.U.K. Yucel, A. Demirbas, Prompt gamma neutron activation analysis of boron with a 241 Am-Be neutron source, J. Radioanal. Nucl. Chem. 262 (3) (2004) 661-664.  https://doi.org/10.1007/s10967-005-0489-z
  15. Z. Zhang, Y. Chong, X. Chen, C. Jin, L. Yang, T. Liu, PGNAA system preliminary design and measurement of In-Hospital Neutron Irradiator for boron concentration measurement, Appl. Radiat. Isot. 106 (2015) 161-165.  https://doi.org/10.1016/j.apradiso.2015.07.049
  16. Z. Abidin, Set-up of prompt gamma neutron activation analysis system at Kartini reactor, No. 1, in: Journal of Physics: Conference Series, 1080IOP Publishing, 2018, August, 012030. 
  17. Mevex Linear Accelerators (Linacs). Mevex. https://www.mevex. com/. 
  18. O. Sierra, G. Parrado, Y. Canon, A. Porras, D. Alonso, D.C. Herrera, et al., Characterization of HPGe gamma spectrometric detectors systems for instrumental neutron activation analysis (INAA) at the Colombian geological survey, No. 1, in: AIP Conference Proceedings, 1753AIP Publishing LLC., 2016, July, 080011. 
  19. G.R. de Melo, G.S. Zahn, F.A. Genezini, E.G. Moreira, Development of an environmental monitoring station for HPGe detectors, Brazil. J. Radiat. Sci. 9 (1A) (2021). 
  20. K. Babaeian, F. Rahmani, Y. Kasesaz, Conceptual design of prompt gamma neutron activation analysis facility at Tehran Research Reactor for BNCT application, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 935 (2019) 185-190.  https://doi.org/10.1016/j.nima.2019.05.040
  21. GMX Series Coaxial HPGe Detector Product Configuration Guide. https://www.ortec-online.com/-/media/ametekortec/brochures/gamma-x.pdf. 
  22. R. Mbarek, A. Brahim, H. Jallouli, A. Trabelsi, Design of a photoneutron source based on a 10 MeV CIRCE III electron linac, Int. J. Adv. Eng. Technol. 6 (1) (2013) 498. 
  23. F. Torabi, S.F. Masoudi, F. Rahmani, Photoneutron production by a 25 MeV electron linac for BNCT application, Ann. Nucl. Energy 54 (2013) 192-196.  https://doi.org/10.1016/j.anucene.2012.11.001
  24. M. Tatari, A.H. Ranjbar, Design of a photoneutron source based on 10 MeV electrons of radiotherapy linac, Ann. Nucl. Energy 63 (2014) 69-74.  https://doi.org/10.1016/j.anucene.2013.07.025
  25. M.B. Chadwick, P. Oblozinsky, A. Blokhin, T. Fukahori, Y. Han, Y. Lee, et al., Handbook on Photonuclear Data for Applications: Cross Sections and Spectra, Iaea Tech-Doc, 2000, p. 1178. 
  26. L. Auditore, R.C. Barna, D. De Pasquale, A. Italiano, A. Trifiro, M. Trimarchi, Study of a 5 MeV electron linac based neutron source, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 229 (1) (2005) 137-143.  https://doi.org/10.1016/j.nimb.2004.11.002
  27. S.F. Masoudi, F.S. Rasouli, Investigating a multi-purpose target for electron linac based photoneutron sources for BNCT of deep-seated tumors, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 356 (2015) 146-153.  https://doi.org/10.1016/j.nimb.2015.04.068
  28. S.Y.F. Chu, L.P. Ekstrom, R.B. Firestone, The Lund/lbnl Nuclear Data Search, 1999 version 2.0, 1999, http://nucleardata.nuclear.lu.se/nucleardata/toi. 
  29. N. Soppera, n - neutron-induced. https://www.oecd-nea.org/janisweb/. 
  30. NNDC. Brookhaven National Laboratory. https://www.nndc.bnl.gov/nudat3/reCenter.jsp?z=28&n=30. 
  31. U.S. Environmental Protection Agency, Office of solid waste and emergency response, Ecol. Soil Screening Level Aluminum (2003). https://www.epa.gov〉files〉eco-ssl_aluminum. 
  32. G. Rout, S. Samantaray, P. Das, Aluminium toxicity in plants: a review, Agronomie 21 (1) (2001) 3-21. 
  33. The Department of Primary Industries and Regional Development, Agriculture and food, effects of soil acidity, Aluminium Toxicity (2018). https://agric.wa.gov.au/n/2113. 
  34. T.H. Melkegna, S.A. Jonah, Elemental analysis of medicinal plants used for the treatment of some gastrointestinal diseases in Ethiopia using INAA technique, Biol. Trace Elem. Res. 199 (3) (2021) 1207-1212.  https://doi.org/10.1007/s12011-020-02236-2
  35. M. Brdar-Jokanovic, Boron toxicity and deficiency in agricultural plants, Int. J. Mol. Sci. 21 (4) (2020) 1424, https://doi.org/10.3390/ijms21041424. 
  36. Plant Analysis Handbook for Georgia. Archived from the original on 2013-04-23. Retrieved 2010-11-15. https://web.archive.org/web/20171125160927/http://aesl.ces.uga.edu/docbase/publications/plant/plant.html. 
  37. H. Aubert, M. Pint, Developments in Soil Science, 7, 1977, pp. 73-77. 
  38. W. De Vos, T. Tarvainen, R. Salminen, S. Reeder, B. De Vivo, A. Demetriades, et al., Geochemical Atlas of Europe. Part 2. Interpretation of Geochemical Maps, Additional Tables, Figures, Maps and Related Publications, Geological Survey of Finland, 2006. Espoo. Electronic version, http://weppi.gtk.fi/publ/foregsatlas/article.php?id=15. 
  39. "7 Hydrogen." National Research Council, Emergency and Continuous Exposure Guidance Levels for Selected Submarine Contaminants, ume 2, The National Academies Press. National Academies of Sciences, Engineering, and Medicine, Washington, DC, 2008, https://doi.org/10.17226/12032, 2008. Emergency and Continuous Exposure Guidance Levels for Selected Submarine Contaminants: Volume 2. Washington, DC: The National Academies Press. 
  40. X. Li, L. O'Moore, Y. Song, P.L. Bond, Z. Yuan, S. Wilkie, et al., The rapid chemically induced corrosion of concrete sewers at high H2S concentration, Water Res. 162 (2019) 95-104. https://doi.org/10.1016/j.watres.2019.06.062