DOI QR코드

DOI QR Code

Failure simulation of nuclear pressure vessel under severe accident conditions: Part I - Material constitutive modeling

  • Eui-Kyun Park (Mechanical Engineering, Korea University) ;
  • Ji-Su Kim (Materials Safety Technology Research Division, Korea Atomic Energy Research Institute) ;
  • Jun-Won Park (Mechanical Engineering, Korea University) ;
  • Yun-Jae Kim (Mechanical Engineering, Korea University) ;
  • Yukio Takahashi (Central Research Institute of Electric Power Industry) ;
  • Kukhee Lim (Korea Institute of Nuclear Safety)
  • 투고 : 2023.05.28
  • 심사 : 2023.07.26
  • 발행 : 2023.11.25

초록

This paper proposes a combined plastic and creep constitutive model of A533B1 pressure vessel steel to simulate progressive deformation of nuclear pressure vessels under severe accident conditions. To develop the model, recent tensile test data covering a wide range of temperatures (from RT to 1,100 ℃) and strain rates (from 0.001%/s to 1.0%/s) was used. Comparison with experimental data confirms that the proposed combined plastic and creep model can well reflect effects of temperature and strain rate on tensile behaviour up to failure. In the companion paper (Part II), the proposed model will be used to simulate OECD lower head failure (OLHF) test data.

키워드

과제정보

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea. (No. 2103079).

참고문헌

  1. L.L. Humphries, T.Y. Chu, J. Bentz, R. Simpson, C. Hanks, W. Lu, B. Antoun, C. Robino, J. Puskar, P. Mongabure, OECD Lower Head Failure Project Final Report, Sandia National Laboratories, Albuquerque, NM, 2002, 87185-1139.
  2. R. Gauntt, D. Kalinich, J.N. Cardoni, J. Phillips, A. Goldmann, S. Pickering, M. Francis, K. Robb, L. Ott, D. Wang, C. Smith, S.S. Germain, D. Schwieder, C. Phelan, Fukushima Daiichi Accident Study (Status as of April 2012), 2012. SAND2012-6173.
  3. T.Y. Chu, M.M. Pilch, J.H. Bentz, J.S. Ludwigsen, W.Y. Lu, L.L. Humphries, Lower Head Failure Experiments and Analyses, vol. 5582, NUREG/CR-, 1998, pp. 98-2047.
  4. S. Jules, L. Flandi, K. Atkhen, Structural Assessment of a Generic PWR1000 Reactor Vessel under IVR, IVMR Project Internal Report, 2016.
  5. Y.J. Lee, J.M. Kim, H.M. Kim, D.H. Lee, C.K. Chung, Structural integrity evaluation of reactor pressure vessel bottom head without penetration nozzles in core melting accident, J. Comput. Struct. Eng. Inst. Korea (2014).
  6. T.H. Kim, S.H. Kim, Y.S. Chang, Structural assessment of reactor pressure vessel under multi-layered corium formation conditions, Nucl. Eng. Technol. 47 (3) (2015) 351-361. https://doi.org/10.1016/j.net.2014.12.017
  7. J.F. Mao, J.W. Zhu, S.Y. Bao, L.J. Luo, Z.L. Gao, Creep deformation and damage behavior of reactor pressure vessel under core meltdown scenario, Int. J. Pres. Ves. Pip. 139 (2016) 107-116. https://doi.org/10.1016/j.ijpvp.2016.03.009
  8. T.H. Lee, Y.J. Oh, I.S. Hwang, Bottom-mounted nozzle failure modes of a nuclear reactor pressure vessel under severe accident conditions, Key Eng. Mater. 297 (2005) 1652-1658. https://doi.org/10.4028/www.scientific.net/KEM.297-300.1652
  9. F.W. Brust, R. Iyengar, M. Benson, H. Rathbun, Severe accident condition modeling in PWR environment: creep rupture modeling, Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP 55638 (2013). V01AT01A054.
  10. J. Arndt, H. Grebner, J. Sievers, Failure assessment methodologies for pressure-retaining components under severe accident loading, Sci. Technol. Nucl. Install. (2012).
  11. V. Koundy, F. Fichot, H.G. Willschuetz, E. Altstadt, L. Nicolas, J.S. Lamy, L. Flandi, Progress on PWR lower head failure predictive models, Nucl. Eng. Des. 238 (9) (2008) 2420-2429. https://doi.org/10.1016/j.nucengdes.2008.03.004
  12. Y. Takahashi, Unified constitutive modeling of three alloys under a wide range of temperature, Int. J. Pres. Ves. Pip. 172 (2019) 166-179. https://doi.org/10.1016/j.ijpvp.2019.03.018
  13. Japan Nuclear Energy Safety Organization, Project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) Material Properties Data Book at High Temperature for Dissimilar Metal Welding in Reactor Pressure Vessel, 2013 (in Japanese).
  14. Y. Takahashi, Development of accurate inelastic analysis models for materials constituting penetrations in reactor vessel, Denryoku Chuo Kenkyusho Hokoku 1-4 (2015).
  15. Y. Takahashi, Modelling of rupture ductility of metallic materials for wide ranges of temperatures and loading conditions, part I: development of basic model, Mater. A. T. High. Temp. 37 (6) (2020) 357-369.
  16. ABAQUS, Abaqus User's Manual Version 2019, Dassault Syst'emes Simulia Corp. Provid. RI, USA, 2019.
  17. J.L. Rempe, S. a Chavez, G.L. Thinnes, Light Water Reactor Lower Head Failure Analysis (No. NUREG/CR-5642; EGG-2618), Nuclear Regulatory Commission, Washington, DC (United States), 1993.
  18. B.S. Lee, J.M. Kim, J.Y. Kwon, K.J. Choi, M.C. Kim, A practical power law creep modeling of alloy 690 SG tube materials, Nucl. Eng. Technol. 53 (9) (2021) 2953-2959. https://doi.org/10.1016/j.net.2021.03.004
  19. Z. Gao, C. Lu, Y. He, R. Liu, H. He, W. Wang, W. Zheng, J. Yang, Influence of phase transformation on the creep deformation mechanism of SA508 Gr.3 steel for nuclear reactor pressure vessels, J. Nucl. Mater. 519 (2019) 292-301. https://doi.org/10.1016/j.jnucmat.2019.04.006
  20. K. Lim, Y. Cho, S. Whang, H.S. Park, Evaluation of an IVR-ERVC strategy for a high power reactor using MELCOR 2.1, Ann. Nucl. Energy 109 (2017) 337-349. https://doi.org/10.1016/j.anucene.2017.05.045