DOI QR코드

DOI QR Code

Development of a real-time mobile gamma-ray measurement system for shipboard use

  • Chang-Jong Kim (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Mee Jang (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Hyuncheol Kim (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Jong-Myoung Lim (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Wanno Lee (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Gyu-Seong Cho (Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2023.03.15
  • 심사 : 2023.07.22
  • 발행 : 2023.11.25

초록

Large areas must be rapidly screened to monitor radiation in marine environments. For this purpose, this study developed a mobile real-time gamma-ray measurement system for shipboard use and evaluated its performance. The system was developed to measure engine or generator cooling water by installing a canister inside the ship. The minimum detectable activity of the system is about 0.8 Bq/L for a 60 s measurement period, and real-time data transmission and remote control are possible. The system was tested in the field and is currently being installed and operated on ships in service. Such a ship-based real-time gamma-radiation measurement system is suitable for a wide range of marine radiation surveillance applications and is expected to be rapidly deployed.

키워드

과제정보

This study was supported by the KAERI R&D Program (No. 521520-22) and presented at the International Conference on Nuclear Analytical Techniques in 2022 (NAT2022), which was held in Daejeon, Korea, from December 7 to 9, 2022.

참고문헌

  1. C. Tsabaris, C. Bagatelas, Th Dakladas, C.T. Papadopoulos, R. Vlastou, G. T. Chronis, An autonomous in situ detection system for radioactivity measurements in the marine environment, Appl. Radiat. Isot. 66 (2008) 1419-1426, https://doi.org/10.1016/j.apradiso.2008.02.064.
  2. P.P. Povinec, I. Osvath, M.S. Baxter, Underwater gamma-spectrometry with HPGe and NaI(T1) detectors, Appl. Radiat. Isot. 47 (1996) 1127-1133, https://doi.org/10.1016/S0969-8043(96)00118-2.
  3. R. Casanovas, J.J. Morant, M. Salvado, Implementation of gamma-ray spectrometry in two real-time water monitors using NaI(Tl) scintillation detectors, Appl. Radiat. Isot. 80 (2013) 49-55, https://doi.org/10.1016/j.apradiso.2013.06.003.
  4. J.H. Lee, J.I. Byun, D.M. Lee, A two-point in situ method for simultaneous analysis of radioactivity in seawater and sediment, J. Radioanal. Nucl. Chem. 322 (2019) 639-648, https://doi.org/10.1007/s10967-019-06774-5.
  5. C. Tsabaris, D. Ballas, On line gamma-ray spectrometry at open sea, Appl. Radiat. Isot. 62 (2005) 83-89, https://doi.org/10.1016/j.apradiso.2004.06.007.
  6. H. Dulai, J. Kamenik, C.A. Waters, J. Kennedy, J. Babinec, J. Jolly, M. Williamson, Autonomous long-term gamma-spectrometric monitoring of submarine groundwater discharge trends in Hawaii, J. Radioanal. Nucl. Chem. 307 (2016) 1865-1870, https://doi.org/10.1007/s10967-015-4580-9.
  7. M. Ahmadi, P.M. Ahmadpour, M. Rabbani, Designing of an online system for radiocaesium measurements in the marine environment, Appl. Radiat. Isot. 69 (2011) 1079-1083, https://doi.org/10.1016/j.apradiso.2010.11.022.
  8. U.R. Aakenes, Radioactivity monitored from moored oceanographic buoys, Chem. Ecol. 10 (1995) 61-69, https://doi.org/10.1080/02757549508035330.
  9. J.I. Byun, S.W. Choi, M.H. Song, B.U. Chang, Y.J. Kim, J.Y. Yun, A large buoy-based radioactivity monitoring system for gamma-ray emitters in surface seawater, Appl. Radiat. Isot. 162 (2020), 109172, https://doi.org/10.1016/j.apradiso.2020.109172.
  10. I. Osvath, P.P. Povinec, H.D. Livingston, T.P. Ryan, S. Mulsow, J.-F. Commanducci, Monitoring of radioactivity in NW Irish Sea water using a stationary underwater gamma-ray spectrometer with satellite data transmission, J. Radioanal. Nucl. Chem. 263 (2005) 437-440, https://doi.org/10.1007/s10967-005-0073-6.
  11. J.A. Caffrey, K.A. Higley, A.T. Farsoni, S. Smith, S. Menn, Development and deployment of an underway radioactive cesium monitor off the Japanese coast near Fukushima Dai-ichi, J. Environ. Radioact. 111 (2012) 120-125, https://doi.org/10.1016/j.jenvrad.2011.12.015.
  12. C. Tsabaris, Monitoring natural and artificial radioactivity enhancement in the Aegean Sea using floating measuring systems, Appl. Radiat. Isot. 66 (2008) 1599-1603, https://doi.org/10.1016/j.apradiso.2008.01.020.
  13. J.I. Byun, J.H. Rho, S.W. Choi, A shipboard real-time gamma-ray measurement system for detecting radionuclides in seawater, Nucl. Instrum. Methods Phys. Res. A. 1005 (2021), 165374, https://doi.org/10.1016/j.nima.2021.165374.
  14. L.A. Currie, Limits for qualitative detection and quantitative determination. Application to radiochemistry, Anal. Chem. 40 (1968) 586-593, https://doi.org/10.1021/ac60259a007.