Acknowledgement
This research was supported by the National Key Research and Development Program of China (No. 2019YFC1907704).
References
- C. Ramesh, N. Murugesan, V. Ganesan, N. Sivai Bharasi, M.G. Pujar, U. Kamachi Mudali, Studies on dissolution behavior of the surface layer of sodium-exposed SS 316LN in decontaminating formulation using PEMHS, Nucl. Technol. 197 (2017) 99-109, https://doi.org/10.13182/NT15-141.
- W. Zhao, J. Cao, S. Wang, X. Wen, Y. Zhang, R. Ding, J. Peng, Study on laser decontamination technology for metal scraps with radioactively contaminated surfaces, Hedongli Gongcheng/Nuclear Power Eng. 42 (2021) 250-255, https://doi.org/10.13832/j.jnpe.2021.05.0250.
- D. Gurau, R. Deju, The use of chemical gel for decontamination during decommissioning of nuclear facilities, Radiat. Phys. Chem. 106 (2015) 371-375, https://doi.org/10.1016/j.radphyschem.2014.08.022.
- J. Holecek, P. Otahal, Non-destructive decontamination of building materials, Radiat. Phys. Chem. 116 (2015) 393-396, https://doi.org/10.1016/j.radphyschem.2015.03.005.
- A.J. Potiens, J.C. Dellamano, R. Vicente, M.P. Raele, N.U. Wetter, E. Landulfo, Laser decontamination of the radioactive lightning rods, Radiat. Phys. Chem. 95 (2014) 188-190, https://doi.org/10.1016/j.radphyschem.2013.03.043.
- L. Zhong, J. Lei, J. Deng, Z. Lei, L. Lei, X. Xu, Existing and potential decontamination methods for radioactively contaminated metals-A Review, Prog. Nucl. Energy 139 (2021) 103854, https://doi.org/10.1016/j.pnucene.2021.103854.
- L. Li, Z. Gu, W. Xu, Y. Tan, X. Fan, D. Tan, Mixing mass transfer mechanism and dynamic control of gas-liquid-solid multiphase flow based on VOF-DEM coupled, Energy 272 (2023) 127015, https://doi.org/10.1016/j.energy.2023.127015.
- L. Li, W. Xu, Y. Tan, Y. Yang, J. Yang, D. Tan, Fluid-induced vibration evolution mechanism of multiphase free sink vortex and the multi-source vibration sensing method, Mech. Syst. Signal Process. 189 (2023) 110058, https://doi.org/10.1016/j.ymssp.2022.110058.
- S. Pradhan, S.R. Das, P.C. Jena, D. Dhupal, Machining performance evaluation under recently developed sustainable HAJM process of zirconia ceramic using hot SiC abrasives: an experimental and simulation approach, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 236 (2022) 1009-1035, https://doi.org/10.1177/09544062211010199.
- S. Pradhan, D. Dhupal, S.R. Das, P.C. Jena, Experimental investigation and optimization on machined surface of Si3N4ceramic using hot SiC abrasive in HAJM, Mater. Today Proc. 44 (2021) 1877-1887, https://doi.org/10.1016/j.matpr.2020.12.066.
- S. Pradhan, S.R. Das, B.K. Nanda, P.C. Jena, D. Dhupal, Experimental investigation on machining of hardstone quartz with modified AJM using hot silicon carbide abrasives, J. Brazilian Soc. Mech. Sci. Eng. 42 (2020), https://doi.org/10.1007/s40430-020-02644-4.
- Q. Lin, H. Liu, C. Zhu, R.G. Parker, Investigation on the effect of shot peening coverage on the surface integrity, Appl. Surf. Sci. 489 (2019) 66-72, https://doi.org/10.1016/j.apsusc.2019.05.281.
- Q. Lin, P. Wei, H. Liu, J. Zhu, C. Zhu, J. Wu, A CFD-FEM numerical study on shot peening, Int. J. Mech. Sci. 223 (2022) 107259, https://doi.org/10.1016/j.ijmecsci.2022.107259.
- V.B. Nguyen, H.J. Poh, Y.W. Zhang, Predicting shot peening coverage using multiphase computational fluid dynamics simulations, Powder Technol. 256 (2014) 100-112, https://doi.org/10.1016/j.powtec.2014.01.097.
- M. Jebahi, A. Gakwaya, J. Levesque, O. Mechri, K. Ba, Robust methodology to simulate real shot peening process using discrete-continuum coupled method, Int. J. Mech. Sci. 107 (2016) 21-33, https://doi.org/10.1016/j.ijmecsci.2016.01.005.
- M. Ebrahimi, M. Crapper, CFD-DEM simulation of turbulence modulation in horizontal pneumatic conveying, Particuology 31 (2017) 15-24, https://doi.org/10.1016/j.partic.2016.05.012.
- L. Chen, X. Yang, G. Li, J. Yang, C. Wen, X. Li, C. Snape, Dynamic modelling of fluidisation in gas-solid bubbling fluidised beds, Powder Technol. 322 (2017) 461-470, https://doi.org/10.1016/j.powtec.2017.09.039.
- S. Wang, H. Li, R. Wang, X. Wang, R. Tian, Q. Sun, Effect of the inlet angle on the performance of a cyclone separator using CFD-DEM, Adv. Powder Technol. 30 (2019) 227-239, https://doi.org/10.1016/j.apt.2018.10.027.
- D. Zhou, X. Ma, Y. Du, F. Zhang, Y. Chen, H. Wang, Study on EDEM-Fluent Coupled Simulation of Nozzle Structure Parameters in Sandblasting Process, vol. 51, 2022, pp. 192-201, https://doi.org/10.16490/j.cnki.issn.1001-3660.2022.01.020.
- X. Liu, J. Gu, G. Qi, L. Yang, A. Li, Optimization of shot peening process parameters based on CFD-DEM simulation, Surf. Technol. (1) (2018) 8-15, https://doi.org/10.16490/j.cnki.issn.1001-3660.2018.01.002.
- J. Chen, Y. Wang, X. Li, R. He, S. Han, Y. Chen, Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD-DEM coupled method, Powder Technol. 275 (2015) 182-187, https://doi.org/10.1016/j.powtec.2014.12.057.
- Y. Liu, J. Zhang, J. Wei, X. Liu, Optimum structure of a laval nozzle for an abrasive air jet based on nozzle pressure ratio, Powder Technol. 364 (2020) 343-362, https://doi.org/10.1016/j.powtec.2020.01.086.
- J.F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys. 24 (1953) 981-988, https://doi.org/10.1063/1.1721448.
- S. Huang, Z. Tang, J. Huang, C. Ou, Z. Hui, Investigation of influencing factors of wear in a sandblasting machine by CFD-DEM coupled, Part. Sci. Technol. 40 (2022) 838-847, https://doi.org/10.1080/02726351.2021.2018531.
- G. Chen, D.L. Schott, G. Lodewijks, Sensitivity analysis of DEM prediction for sliding wear by single iron ore particle, Eng. Comput. (Swansea, Wales) 34 (2017) 2031-2053, https://doi.org/10.1108/EC-07-2016-0265.
- W. Fuchao, Research on wear evaluation method of bulk transfer system using DEM simulation. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201802&filename=1017300936.nh, 2015.
- Y. Wang, J. Tan, X. Cai, D. Ren, X. Ma, Numerical simulation of subsonic and transonic viscous flow around airfoil using meshless method coupled with RNGk-ε turbulent model, Acta Aeronautica Astronautica Sinica 36 (2016) 1411-1421, https://doi.org/10.7527/S1000-6893.2014.0120.
- V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput. 1 (1986) 3-51, https://doi.org/10.1007/BF01061452.
- S.A. Morsi, A.J. Alexander, An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech. 55 (1972) 193-208, https://doi.org/10.1017/S0022112072001806.
- L. Pan, Q. Wang, Z. He, Practical Multinomial Flow Numerical Simulation-ANSYS Fluent Multinomial Flow Model and its Engineering Application, China Science Publishing & Media Ltd., Beijing, 2020.
- W. Zhang, Study on the Acceleration Dynamics of Abrasive in Premixed Abrasive Water Jet, Chongqing University, 2017. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDLAST2018&filename=1018701998.nh.
- W. Zuo, Abrasive Accelerated Mechanisms and Distribution Law in Pre-mixed Abrasive Jet, Chongqing University, 2012.
- M. Ebrahimi, M. Crapper, J.Y. Ooi, Experimental and simulation studies of dilute horizontal pneumatic conveying, Part. Sci. Technol. 32 (2014) 206-213, https://doi.org/10.1080/02726351.2013.851133.
- ANSYS Inc, Ansys Fluent Theory Guide, ANSYS Inc., USA, 2020.
- B. Oesterle, T. Bui Dinh, Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers, Exp. Fluid 25 (1998) 16-22, https://doi.org/10.1007/s003480050203.
- C.B. Solnordal, C.Y. Wong, J. Boulanger, An experimental and numerical analysis of erosion caused by sand pneumatically conveyed through a standard pipe elbow, Wear 336-337 (2015) 43-57, https://doi.org/10.1016/j.wear.2015.04.017.
- Q. Zhang, T. Guo, G. Hong, L. Cao, Numerical prediction of particle trajectories in an erosion experiment, Baozha Yu Chongji/Explosion Shock Waves 41 (2021) 1-8, https://doi.org/10.11883/bzycj-2020-0118.
- L. Zhong, J. Lei, Z. Zuo, J. Tu, J. Deng, Z. Lei, M. Zhao, Y. Hua, Simulation analysis of the decontamination effect of different nozzles abrasive jet based on CFD-DEM, Part. Sci. Technol. (2022), https://doi.org/10.1080/02726351.2022.2158147.